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Executive Summary

This deliverable includes four parts that present the results of work package 5. The first three parts describe
the results of the three tasks of the work package, while the fourth part collects appendices with further
in-depth results.
Part I includes the contributions of partners to Task 5.1, which focuses on the classification, identification, and
mitigation of attacks at the physical layer security. First, we study how to protect the legitimate users against
eavesdropping and spoofing using radar signals by designing a robust beamforming. Complementarily, we
provide a comprehensive study of physical authentication based on the angles of arrival, from analytical
proofs that this feature in digital arrays is difficult to spoof, to a security analysis of a system using reflective
intelligent surfaces and under realistic multipath conditions. Next, we address device identification at
scale using radio-frequency fingerprints first as an alternative to cryptographic authentication, especially
for large IoT deployments based on hardware imperfections, and channel-based authentication that uses
the radio channel as a location-dependent signature. We introduce a receiver-invariant radio frequency
fingerprinting identification system based on domain adaptation that aligns the feature spaces of different
receivers, achieving a large fraction of the accuracy.
We also investigate the detection and characterization of active attacks. We propose several complementary
jamming-detection schemes, such as detecting signal jammers by using spectrograms with supervised and
unsupervised learning, developing a dedicated jamming detector that analyzes radio signals with a con-
volutional neural network trained to implement a generalized likelihood ratio test, and a dynamic-graph
framework for cell-free massive multiple-input-multiple-output, in which graph neural networks monitor the
evolving access-point/user connectivity to reveal jammer activity.
We show that image-based frequency-domain analysis of software-defined networking traffic can detect dis-
tributed denial of service attacks by turning magnitude–phase spectra into spectral fingerprints, a technique
that naturally extends to physical-layer anomaly detection. Finally, we quantify how residual hardware
impairments, in particular carrier frequency offset and symbol timing offset, shape discriminative RF finger-
prints, and show that machine learning models trained on these features can distinguish legitimate devices
from adversarial transmitters even when an attacker uses the same protocol, modulation, and transmission
pattern.

Part II details the partners’ contributions to Task 5.2. The objective of this task is to propose new
physical-layer security-based schemes leveraging 6G key enablers with measurable security guarantees and
to develop new solutions for authentication and key agreement. In the project, we investigate several aspects
of physical-based authentication and secret key generation.
First, we propose several new techniques for physical-layer authentication, from reconciliation schemes that
allow increasing their accuracy by mitigating channel variations, to novel authentication schemes based on
challenge-response at the physical layer schemes that leverage the use of reflective intelligent surfaces and
drones in 6G systems. We also address the effect of hardware imperfections on authentication with reflective
intelligent surfaces.
Next, we develop new wireless secret key generation protocols that are fast, lightweight, and robust against
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eavesdroppers. First, we investigate the feasibility of secret key generation in different line-of-sight multipath
channels, validated by theoretical modelling and experimental campaigns; subsequently, we optimize design
parameters to maximize key rates, and finally, we test our solutions on a demonstrator using software-defined
radio. We also investigate secret key generation in unmanned aerial vehicle contexts, which is a challenging
scenario as the line-of-sight component might be dominant.
We provide rigorous leakage guarantees for secret key generation via conditional mutual information and
conditional mean-entropy estimators, as well as bounds for the information leakage of wiretap codes for
short packet and low latency constraints. We also address attestation requirements, and propose a new
cryptographic attested secret key generation protocol that integrates physical layer features and ensures that
session keys can only be generated by devices at a prescribed location, providing identity-binding, integrity,
and resistance to replay attacks. Finally, we assess the security of new key enablers in 6G, such as integrated
sensing and communications systems, against adversarial machine learning attacks.

Part III covers the contributions of partners to Task 5.3, which focuses on ensuring the trustworthiness of
the 6G physical layer and supporting trust building for autonomous agents through privacy-by-design, robust
sensing, and cross-layer anomaly detection.
In the area of privacy by design, we address the challenge of securing location-based services in 6G networks.
We introduce a joint optimization framework that preserves location privacy through differential perturbation
techniques while meeting service-level latency and throughput constraints. This approach ensures that user
privacy is embedded into the resource allocation process itself, rather than being an afterthought.
To enable trustworthy and robust sensing, we identify physical-layer trust anchors that support cyber-physical
systems. We show that joint sensing of angles of arrival and time of flight provides useful primitives for
verifying the physical integrity and location of autonomous agents. Furthermore, we address the long-term
reliability of hardware-intrinsic radio-frequency fingerprints by modeling the aging drift of radio-frequency
fingerprints. By creating models that predict how hardware changes over time, we help security systems stay
reliable while reducing the need for frequent retraining.
Finally, we advance generalized cross-layer anomaly detection to support the identification of both known
and previously unseen threats. We propose unsupervised learning frameworks, including a solution based on
generative adversarial networks for Cloud radio access networks, to detect unseen contention anomalies by
analyzing cross-layer key performance indicators. We enhance this with semantic metrics, such as the Age
of Consecutive Errors, to prioritize errors based on their semantic significance and persistence. Extending
these concepts to distributed scenarios, we introduce a federated learning framework for collaborative
authentication that handles non-IID data through local fine-tuning, and a position-based intrusion detection
system that fuses physical channel estimates with upper-layer traffic patterns to detect impersonation attacks.
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Deliverable D5.2

Chapter 1

Deliverable Overview and Contribution to
The Architecture

1.1 Deliverable Overview

In this deliverable, we summarize the contribution of the project provided by Working Package 5 on “Artificial
intelligence (AI) / machine learning (ML) Enabled physical-layer security (PLS)”.
This chapter provides an overview of the contributions and their relation to the ROBUST-6G architecture.
We first recall the physical-layer closed-loop module, and then we summarize the contribution of each of the
following chapters.
The rest of the deliverable comprises three parts and the appendices. Each part corresponds to a specific
task of the work package and presents, in short chapters, the scientific results obtained. Extended versions of
chapters are available either in published works (conference and journals) or are in progress; the intermediate
results are in the appendices of this deliverable.

1.2 Physical-layer Closed Loop

PLS solutions are mainly introduced to the ROBUST-6G architecture through the Physical Layer Closed
Loop (PLCL), a high-level architectural mapping has already been underlined in deliverable D6.2. Fig. 1.1
illustrates a first stable version of the PLCL, which involves three key stages: i) monitoring, ii) analysis, and
iii) actuation. It also shows a high-level presentation of the interconnection among the utilized components
and the interaction of the physical layer closed loop to the components of the ROBUST-6G architecture, i.e.,
the zero-touch security management and the network layer.
In brief, PLCL receives: i) physical (PHY) layer inputs from the radio access network (radio access networks
(RAN)) specifications, i.e., RAN network functions (RAN NFs), such as channel state information (channel
state information (CSI)) and radar-based sensing metrics, representing radio frequency (RF) signals and
sensing observations from the radio environment, and ii) Upper layer context inputs from the Zero-touch
Security Management Layer, e.g., security configuration parameters and contextual data such as GNSS-
based localization information and orchestration alerts. The monitoring stage receives the PHY and Upper
layer inputs and exploits the following components: i) PHY monitoring (CENS01), utilized to estimate core
channel metrics, e.g., SNR and determination of line of sight (LoS)/non line of sight (NLoS) conditions, and
ii) Data sets generation and fingerprinting for Physical Layer Security (CCHA02), employed to generate RF
datasets for fingerprinting-based research. The former outputs are fed to the analysis stage to perform: i) PHY
attack identification, e.g., using the Jamming Detection (CUPD03), Signal/Attack Identification solution to
Classify different types of EM Signals (CEBY04), RF-Predict (CGHM02) and Cross-layer Holistic Anomaly
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Figure 1.1: Physical layer closed loop.
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Detection System (CUPD05) components, and, ii) overall trustworthiness evaluation of the physical layer,
e.g., through the Secrecy and Information Leakage (CENS02) and the Trustworthy Sensing and Localization
(CENS03) components. Finally, the actuation stage implements decisions based on the outputs of the first two
stages to support PHY resource control and provisioning. These decisions include: i) the utilization of the
appropriate PLS scheme, i.e., enable/disable security features depending on the required trustworthiness level;
involved components are PLS in non-orthogonal multiple access (NOMA)-multiple input multiple output
(MIMO) Systems (CCHA01), angle of arrival (AoA)-based physical layer authentication (PLA) (CENS04),
Identification/Authentication of Legitimate Devices (CEBY05), PHY-layer based enhanced authentication
and key agreement (AKA) Protocols (CUPD04) and fast secret key generation (SKG) using long-short term
memory (LSTM) networks for Privacy Amplification (CENS05), and, ii) the activation of PHY control
operations to adjust parameters regarding power/resource allocation, modulation schemes, synchronization
sequences etc, through RAN Control and RF Fingerprinting Migration (CGHM01) component. This stage
closes the PLCL by feeding back to: i) the PHY Layer the updated RAN specifications (RAN NFs) for
continuous adaptation, and, ii) the orchestrator through the programmable monitoring platform, raising
potential alerts from the infrastructure layer to the upper layers.
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Table 1.1: Detailed Contribution to the Architecture

Chapter
Number

Architecture Component Dem. Comp.

2 Attack Identification (Analysis) –

3, 19 Monitoring of the PHY (Monitoring) CENS01

3, 19 Trustworthiness Evaluation of Localization and Sensing
(Analysis)

CENS03

4 Monitoring and Analysis (Authentication) CGHM01

5 PHY-Attack Identification (Analysis) –

6 PHY-Attack Identification (Analysis) –

7 PHY-Attack Identification (Analysis) –

8 PHY-Attack Identification (Analysis) –

9 Attack identification solution CEBY04

10 Attack identification solution CEBY04

11 PHY trustworthiness evaluation (Analysis) –

12 Fast and Robust SKG (Actuation) CENS05

13 Enhancing Performance of CSI-based PLA through
Reconciliation (Actuation)

–

14, 12 Secrecy and Information Leakage Estimation CENS02

15, 16 PHY-Attack Identification (Analysis) CUPD04

17 PHY-Trustworthiness Evaluation –

18 Identification/authentication of legitimate devices CEBY05

19, 3 AoA and ToF based PLA (Actuation) CENS04

20 Monitoring and Analysis (Authentication) CGHM02

21 PHY-Trustworthiness Evaluation CLIU02

22 PHY-Attack Identification (Analysis) CLIU02

23 PHY-Attack Identification (Analysis) –

24 PHY-Attack Identification (Analysis) CUPD05
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1.3 Detailed Contributions - Part I

In Chapter 2, CHA designs a dedicated sensing signal to detect the presence and estimate the location of a
potential eavesdropper (Eve) with uncertain positioning. This is achieved by estimating key radar parameters
such as the angle of arrival (AoA) and the range of the target. This solution is part of the PHY-Attack
Identification module of the proposed ROBUST-6G architecture.
Chapter 3 presents a high-level discussion of four recent works from ENSEA and CYU AoA-based physical-
layer authentication (PLA) and localization disseminated with ROBUST-6G acknowledgment in [1], [2], [3],
[4] (joint work with UNIPD). These works map to CENS01, CENS03 and CENS04 in the ROBUST-6G
architecture in all three stages of the physical layer closed loop (PLCL). They span multiple technological
readiness level (TRL)s, including both i) theoretical results on the pertinence of the AoA as an unforgeable
physical feature that can enable spoofing-resilient PLA, ii) analysis of AoA-PLA under advanced spoofing
attacks using RIS (joint work with UNIPD) and finally iii) a PoC demonstration of its feasibility on a real,
outdoor, massive multiple input multiple output (mMIMO) dataset at frequency range 1 (FR1).
In Chapter 4, GOHM addresses the scalability challenge of radio frequency fingerprinting identification
(RFFI) caused by receiver variability, where models trained on one receiver fail when deployed on another.
We propose a methodology based on unsupervised domain adaptation (UDA), specifically utilizing an
adversarial discriminative domain adaptation (ADDA) framework to align feature distributions between
source and target receivers. This approach eliminates the need for extensive labeled retraining data when
migrating security models between different receivers or base stations. This solution defines the CGHM01
component within the analysis module of the ROBUST-6G architecture, enabling the orchestrator to maintain
trust assessment of IoT devices as they move between different access points.
In Chapter 5, UNIPD presents an extensive survey on physical layer-based device fingerprinting, which is
an emerging device authentication for wireless security. We focus on hardware impairment-based identity
authentication and channel features-based authentication, which are passive techniques that are readily
applicable to legacy IoT devices.
In Chapter 6, UNIPD proposes a new technique to detect jamming attacks based on the analysis of the
spectrogram by a jamming detection device which is external to the network. The detection is based on a
ML model that implements a one-class classifier by a convolutional autoencoder (CAE). This solution is
part of the PHY-Attack Identification module of the proposed ROBUST-6G architecture, as it is aimed at
analyzing measured signals (in this case, the spectrogram of the wireless spectrum used by the 6G cell) to
identify threats (in this case, jamming attacks).
In Chapter 7, UNIPD offers another contribution on this topic by optimizing the classifier to ensure that
it implements the likelihood test, thus connecting it to the statistical hypothesis testing theory. No specific
demonstration component will be provided for this solution, but the solution has been extensively validated
with experiments conducted with software-defined radios on a private 5G network set up for this purpose.
In Chapter 8, UNIPD resorts to dynamic graphs and graph convolution neural networks to detect jamming
signals while capturing evolving communication links. No specific demonstration component will be
provided for this solution, but the solution has been extensively validated with simulations.
Although in Chapter 9 EBY focuses on detecting distributed denial of service (DDoS) attacks at the
software defined networking (SDN) controller, its frequency domain imaging approach is directly relevant
to the CEBY04 component for physical layer attack detection because both rely on identifying spectral and
phase-based irregularities rather than simple time domain variations. By producing image-based spectral
fingerprints that reflect full magnitude and phase relationships, the method closely resembles how CEBY04
analyzes radio frequency (RF) waveform structures to expose jamming, spoofing, and replay attempts. This
alignment shows that the proposed technique can naturally extend into 6G physical layer level protection,
where subtle spectral deviations are essential for detecting intelligent and adversarial signal behavior.
Chapter 10 is directly relevant to the CEBY04 component for physical layer attack detection because RF
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fingerprinting exploits inherent hardware imperfections that cannot be replicated by attackers, allowing the
system to distinguish legitimate devices from spoofed or cloned transmitters. By learning spectral and
temporal features shaped by residual hardware impairments (RHI), carrier frequency offset (CFO), symbol
timing offset (STO), and other device-specific distortions, the method developed by EBY aligns with how
CEBY04 identifies subtle waveform inconsistencies that reveal impersonation and rogue device activity.
These hardware-induced signatures remain stable even under noise and fading, making RF fingerprinting a
strong and practical foundation for next-generation 6G physical-layer-level attack detection.

1.4 Detailed Contributions - Part II

In Chapter 11, CHA proposes a wireless setting where a resource-constrained node (N) establishes a secure
session with an access point (AP), with both parties holding long-term certificate authority (CA)- issued
credentials and no pre-shared secrets. By combining identity, integrity, and physical-layer information, the
proposed system ensures that the resulting session key can only be derived by devices at the same physical
location. Therefore, the design system model aims to integrate the node, the AP, and the CA within well-
defined trust boundaries to achieve robust and location-bound secure communication. This solution is part
of the Analysis module of the proposed ROBUST-6G architecture.
Chapter 12 discusses fast and robust secret key generation (SKG). Across our works [5–7] at ENSEA, we
generated research outputs moving from low TRL works on the communication-theoretic modeling of LoS
multipath channels, to a comprehensive study of SKG design parameters under worst-case eavesdropping
attacks (on-the-shoulder), and finally to a context-aware, real-time SKG demonstrator on software-defined
radios (SDRs). In these works, we delivered fast and lightweight, quantum-resilient SKG, with applications
to 6G and Internet of Things (IoT) settings, well suited for low-end devices. We placed a strong emphasis
on ensuring rigorous security guarantees (via conditional mutual information and conditional min-entropy
estimators) and on the practical feasibility and real-time operation employing experimental measurement
campaigns and demonstrators.
Chapter 13 discusses PLA enhanced with reconciliation [8,9] based on recent ENSEA results. We demon-
strate how the use of Slepian Wolf decoding can be applied in the case of CSI-based PLA and showcase
that a careful fine-tuning of coding parameters, i.e., code-length and code-rate, can allow for arbitrarily low
reconciliation error rates. Furthermore, in order to address evolving statistics in the time-domain for the
CSI, we propose an adaptive robust principal component analysis pre-processing approach, which explic-
itly accounts for cross-corelation of channel realizations following a Markov chain model [10, 11]. These
approaches can be incorporated into other PLA approaches, e.g., using RF fingerprints.
In Chapter 14, ENSEA discusses information leakage estimation and the possibility of using keyless
transmissions when using finite blocklength wiretap coding. Wiretap coding allows for counter passive
eavesdropping, provided that the legitimate receiver has a SNR advantage compared to the eavesdropper.
In order to select a suitable wiretap coding scheme, it is necessary to adapt the channel coding rate to the
channel conditions. For applications requiring short packets or low latency, it is not possible to guarantee
a vanishing information leakage, and the back-off from secrecy capacity must be taken into account. Our
goal is to obtain lower bounds on the achievable secrecy rate for a given block length, leakage, and error
probability for general eavesdroppers’ channels.
In Chapter 15, UNIPD provides an extensive analysis of attacks and their mitigation against PLA mechanisms
implemented in a 6G network using reconfigurable intelligent surface (RIS). This technology is a key point
for current and future communication networks in extending coverage and improving connectivity. Here, we
also propose to use it to support PLA, using an innovative scheme based on a challenge-response mechanism.
The resulting authentication mechanisms are part of the PHY-Attack Identification block, which performs
the analysis of the received signal to establish, in this case, the authenticity of the message. Such solutions
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will be in part included in CUPD04 as an enhanced authentication solution, even with respect to traditional
PLA.
In Chapter 16, UNIPD proposes an innovative solution to generate secret keys using drones and to exploit the
fading characteristics of the wireless communication channel. This pertains to the block PHY Components
of the ROBUST-6G architecture, as it provides mechanisms of actuation by which drones change their route
to implement the key generation mechanisms. It will be implemented in a second version of the CUPD04
component.
In Chapter 17, UNIPD proposes novel attacks based on adversarial ML to evaluate the robustness of Inte-
grated sensing and communication (ISAC) systems, considering different scenarios and attacker capabilities.

1.5 Detailed Contributions - Part III

Chapter 18 is directly relevant to the CEBY05 component for authentication and identification because
it demonstrates how residual hardware impairments, combined with RIS induced channel diversity, create
distinctive physical layer characteristics that reliably separate legitimate transmitters from spoofers. By
exploiting the temporal consistency of the Alice to Bob channel and the unpredictable CSI variations
produced by Eve, the method proposed by EBY aligns with how CEBY05 verifies identity through sequential
channel similarity checks. This RIS enriched channel structure strengthens discrimination, reduces miss
detection and false alarms, and provides a robust basis for confirming that the received signals originate from
the legitimate device.
In Chapter 19, we synthesized five contributions from ENSEA and CYU [12–16] on the role of the
physical layer in 6G trust and trustworthiness. Across all works, we observed a common thread: future
cyber–physical systems (CPS) and multi-agent networks will require objective, quantifiable measures of
trust, deeply embedded in the wireless substrate itself. We made the case that joint AoA and time of flight
(ToF) sensing emerge as crucial primitives that enhance trust, integrity, and accountability of autonomous
devices.
In Chapter 20, GOHM introduces RF-PREDICT, a study focused on the temporal evolution of RF fingerprints
to address “aging drift,” where RFFI accuracy decreases over time due to factors such as hardware aging,
temperature, and battery level. To analyze these factors, we have been collecting long-term data from custom-
made, identical IoT sensors. A key objective of this study is to identify the optimum transmission interval
required to keep RFFI accuracy stable. This work defines the CGHM02 component, which is dedicated
to ensuring high identification accuracy is maintained over long operational periods without necessitating
frequent device re-enrollment or model retraining.
In Chapter 21, LIU addresses physical-layer attack identification within the PLCL analysis stage by providing
unsupervised anomaly detection capabilities for 6G cloud RANs. This work contributes to generalized
cross-layer anomaly detection by integrating Generative Adversarial Networks (GAN) with transformer
architectures to capture complex temporal dependencies in RAN performance data. The framework monitors
key performance indicators spanning fronthaul traffic, thread scheduling, and precision time protocols:
metrics essential for identifying network contention that may indicate physical-layer attacks or system
degradation. By employing sliding window techniques and attention mechanisms, RANGAN enables the
analysis stage to identify abnormal behaviors across physical and MAC layers, supporting trustworthiness
evaluation and informing actuation decisions.
In Chapter 22, LIU contributes to physical layer trustworthiness evaluation within the PLCL analysis
stage through semantics-aware remote estimation of Markov sources under resource constraints. This work
addresses the challenge of determining information trustworthiness by integrating Age of Consecutive Errors
(AoCE) to quantify the significance of estimation errors and Age of Information (AoI) to assess the usefulness
of aged information. The framework formulates optimal transmission policies as constrained Markov
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decision processes, demonstrating that switching policies achieve superior estimation quality. Together
with Chapter 21, these works define the CLIU02 component, delivering LIU’s contribution to Task 5.3 on
cross-layer anomaly detection involving semantic attributes of information and learning attack phenomena.
This semantic-aware approach enables distinguishing between critical errors requiring immediate action and
benign variations.
In Chapter 23, UNIPD introduces a solution for authentication based on federated learning, where multiple
base stations of a 6G network use local models to determine if the transmitter is transmitting from an
authorized area or not, using the estimated CSI. The training is performed in a federated fashion while
ensuring that each base station obtains a local, specific model that takes into account the specific propagation
characteristics between the transmitter and the base station. This contribution is related to the PHY-Attack
Identification block of the ROBUST-6G architecture, since it is related to PLA and thus to the analysis of
received signals for security purposes. No component is dedicated to the demonstration of this solution,
although extensive simulation results have been obtained to validate the effectiveness of the solution.
In Chapter 24, UNIPD introduces a new solution based on ML for the detection of threats using information
from multiple layers of the network. In particular, we merge information coming from the physical and the
network layers to establish the authentication of a message in an industrial automation context. This solution
can be considered part of a PHY-Attack Identification module in the ROBUST-6G architecture, as it performs
an analysis of signals to detect threats in a set of signals and will be tested in the CUPD05 component.
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Part I

T5.1 - Classification, Identification and
Mitigation of Attacks at PHY
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Chapter 2

Physical Layer Security in NOMA MIMO
Systems

ISAC is an important technology for sixth-generation (6G) mobile networks, enabling the joint use of
communication and radar sensing within a unified system. While offering significant benefits in terms of
spectral efficiency, ISAC introduces new security challenges. In particular, the joint use of resources for
sensing and communication can increase vulnerability to eavesdropping and information leakage. In this
chapter, CHA studies an uplink NOMA system where the base station (BS) simultaneously receives user data
and senses a potential eavesdropper (Eve) with uncertainty in location. To enhance the PLS, a robust sensing
signal is designed to both sense and jam the Eve. Specifically, we formulate a joint optimization problem
that aims to maximize the sum rate of users and sensing performance while maintaining security against
Eve. Since the optimization problem is challenging and non-convex, we propose an iterative algorithm that
divides the problem into two subproblems, alternately optimizing precoding vectors and sensing power via
quadratic optimization approaches. Simulation results demonstrate the effectiveness of our solution in terms
of fast convergence and resource allocation.

2.1 Background and Motivation

The next generation of wireless networks is expected to support a diverse range of mission-critical ap-
plications, including autonomous systems, industrial automation, and smart defense infrastructure. These
emerging services demand not only ultra-reliable and low-latency communications but also high-precision
environmental awareness and stringent security guarantees. ISAC has emerged as a promising technology
for 6G networks by enabling the joint operation of radar sensing and data communication through the use of
shared spectrum and hardware resources [17], [18]. ISAC reduces hardware cost, improves spectral and en-
ergy efficiency, and facilitates real-time situational awareness via unified waveform design [19]. Despite this,
ISAC introduces new design challenges, particularly in managing the interference between communication
and sensing signals, and safeguarding such systems against malicious targets.
Concurrently, the power-domain NOMA has emerged as a compelling solution for multi-user access in
ISAC systems. By enabling multiple users to simultaneously occupy the same time, frequency, and spatial
resources-distinguished by their transmit power levels-NOMA improves spectral efficiency through super-
position coding at the transmitter and successive interference cancellation (SIC) at the receiver [20]. Thus,
NOMA opens new opportunities for interference-resilient and resource-constrained ISAC system design,
while also introducing new degrees of freedom for designing robust and secure waveforms against Eve in
shared-spectrum environments. Therefore, this work is motivated by ISAC-NOMA beamforming to meet
the quality of services, sensing accuracy, while protecting the users against Eve.
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Figure 2.1: Sensing ratio as a function of the BS–target distance (𝐷 = 20, 25, 30 meters) for different BS
antennas 𝑁 = 16, 32, 64.

2.2 Proposed Methodology

In this work, we consider an uplink ISAC system empowered by power-domain NOMA, where a full-duplex
radar BS equipped with two sets of well-separated antennas with 𝑁𝑡 = 𝑁𝑟 = 𝑁 to mitigate self-interference
simultaneously receives from the uplink transmissions from two multi-antenna user equipment (UE)’s and
the sensing echo, while transmitting radar waveforms to sense or jam a potential passive Eve. Each UE is
equipped with 𝑀 antennas, while Eve is assumed to have a single antenna. Eve acts as a malicious passive
target who tries to overhear the uplink transmissions. While receiving the uplink signals from the UEs,
the ISAC BS concurrently transmits radar signals to not only estimate Eve’s location but also degrade her
wiretapping performance. Such a scenario is typically considered in battlefield applications.

2.3 Numerical Results and Analysis

The simulation results demonstrate the impact of distance and system parameters on the overall performance.
Fig. 2.1 demonstrates the impact of distance and system parameters on the overall performance. In the
first figure, the capacity expressed as is plotted against the BS–target distance for different numbers of base
station antennas 𝑁 = 16, 32, 64. The curves show a consistent decrease in capacity as the distance increases
from 20 m to 30 m, which is mainly due to the increase in path loss and the resulting reduction in received
signal power. Among the three curves, the system with 64 antennas always achieves the highest capacity,
followed by 32 and then 16 antennas. This agrees with the theoretical expectation that increasing the number
of antennas enhances the beamforming gain and spatial diversity, thereby improving the effective SINR.
At shorter distances, the performance gap between different antenna configurations is more pronounced,
highlighting the significant advantage of using a larger antenna array in near- and mid-range scenarios, while
this advantage slightly diminishes at longer distances due to dominant path attenuation effects.
Fig. 2.2 illustrates the convergence behavior of the proposed optimization algorithm in terms of the cost func-
tion versus the number of iterations for different distances. For all distances considered𝐷 = 10, 15, 20, 25, 40,
the cost function decreases rapidly during the first few iterations and then gradually stabilizes after approxi-
mately 6 to 8 iterations. This confirms the fast convergence property of the algorithm and its suitability for
practical implementation. It can also be observed that larger distances start with a higher initial cost and
converge to a higher final value than smaller distances, which is a direct consequence of the lower SINR and
more challenging channel conditions at longer ranges.
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Figure 2.2: Cost function as a function of distance (𝐷 = 10, 15, 20, 25, 40 meters), under 𝑁 = 64.
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In Fig. 2.3 we show the variation of capacity as a function of distance. As seen, due to the high attenuation,
when the target is moving away from the BS, the sensing performance rapidly decreases as the distance
increases. In contracts, the SINR for both users remains relatively stable over the entire distance range from
10 m to 50 m, with only minor fluctuations.

2.4 Integration with the Architecture

We have introduced a secure uplink ISAC systems that employ power-domain NOMA in the presence of
a malicious target with unknown location, which has not been rigorously investigated in the literature.
Existing works do not incorporate estimation-theoretic uncertainty into beamforming design, considering
perfect CSI or sensing parameter estimation. Our work addresses this gap by introducing a CRB-informed
design framework to capture the impact of parameter estimation errors on communication, sensing, and
secrecy performance. The results of our work belong to the PHY-Attack Identification block, which secures
the information from users against Eve.
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Chapter 3

Unforgeable, Angle of Arrival based
Physical Layer Authentication

3.1 Background and Motivation

This chapter presents an integrated discussion of four recent works from ENSEA and CYU on AoA based
PLA and localization disseminated in [1], [2], [3], [4] (joint work with UNIPD). These works span multiple
TRLs, including both i) theoretical results on the pertinence of the AoA as an unforgeable physical feature
that can enable spoofing resilient PLA, ii) analysis of angle of arrival based physical layer authentication
(AoA-PLA) under advanced spoofing attacks using RIS (joint work with UNIPD) and finally iii) a PoC
demonstration of its feasibility on a real, outdoor, mMIMO dataset at FR1.
With respect to low TRL fundamental contributions, we have proven analytically that i) AoA in digital array
MIMO systems is an unforgeable feature. Our proof is twofold and is based on: a) evaluating the mean
square error (MSE) on AoA estimation in digital arrays under impersonation attacks [1] and b) deriving
the misspecified Cramér Rao bound (MCRB) in the AoA estimation in a uniform linear array (ULA) under
spoofing attacks [2]. These results jointly show that spoofing attacks can be identified in digital array systems
using AoA-based PLA due to an attack-induced irreducible error floor that is independent of the SNR.
We note that in earlier joint works within the HEXA-X-II project (in which A. Chorti participated with her
Barkhausen Institut affiliation), we have also shown that, on the contrary, AoA-PLA is not robust under
impersonation attacks in the case of analog array MIMO systems [21]. Our analysis demonstrated that the
loss of spatial degrees of freedom in analog array MIMO and the fact that rely solely on beam search patterns
for source localization, renders the spoofing attack equivalent to a precoding optimization problem that can
be solved precisely if sufficient information is available at the attacker side (legitimate node beamforming
weights, locations of all nodes) as well as adequate power. Within ROBUST-6G we further provided a
security analysis of RIS attacks on AoA-PLA under multipath propagation [21]. It was shown that attacks
are only possible in the (unlikely) scenario that no multipath is present on the RIS-receiver side.
With respect to the suitability of AoA-PLA, we provided PoC results on a real outdoor dataset provided
by Nokia (FR1 with carrier at 2.18 GHz, 64 mMIMO antenna array, 50 orthogonal frequency-division
multiplexing (OFDM) subcarriers). It was shown that high-accuracy AoA-based outdoor localization is
possible using hierarchical machine learning (ML) classifiers (first stage distinguishing between LoS and
NLoS regions and a second stage classifier identifying the exact user track). With respect to the WP5
stated key performance indicators (KPIs) we report reaching AoA-PLA accuracy of 100% at the first
stage and more than 99.6% at the second stage, surpassing the stated target of 90%.
Finally, we provided a first comparison in terms of computational complexity, between a) AoA-PLA and b)
authentication using post-quantum cryptography. To this end, we estimated the number of central processing
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Figure 3.1: System model for AoA spoofing attack, in which Alice is equipped with a single antenna while
both Bob and Eve are equipped with ULA.

unit (CPU) cycles of the proposed AoA-PLA against the state-of-the-art post-quantum signing algorithm
Dilithium 5 (used in authentication handshakes).It was thus established that PLA is superior in terms of
complexity, even when compared to only part of a post-quantum crypto-based authentication scheme. With
respect to the ROBUST-6G KPIs, we report run-times for AoA-PLA of less than 2 msec. Further
improvement in run-times and localization granularity is expected with the inclusion of time of flight (ToF)
as an authentication feature, which is ongoing work, presented in Part II of this deliverable.
In the following, for each related publication, we outline key analytical or algorithmic contributions and
the main numerical results. Finally, we conclude with a joint discussion, highlighting how these works
collectively study the robustness and vulnerabilities of AoA as a robust feature for PLA, across different
array architectures and propagation conditions.

3.2 Digital-array AoA-PLA Under Spoofing Attacks

3.2.1 Proposed Methodology

We considered a single-antenna legitimate user (Alice) communicating with a verifier (Bob) equipped with a
digital ULA of 𝑀 receive antennas, inter-element spacing 𝑑, and wavelength 𝜆. Bob operated under far-field
and narrowband assumptions, with carrier frequency 𝑓𝑐 and bandwidth 𝐵 ≪ 𝑓𝑐.
The PLA protocol consisted of two phases:

• Enrollment phase: Bob collected AoA estimates from known legitimate transmitters (e.g., Alice),
mapping estimated AoAs to node identities. During this offline phase, it was possible to employ
higher-layer authentication mechanisms.

• Verification phase: A node declared their identity to Bob as Alice. Upon receiving this message, Bob
estimated the AoA from the signal source and runs a hypothesis test (classifier) and declares whether
the node is verified as Alice or not. An adversarial node, referred to as Eve, was also considered,
equipped with an arbitrary number of antennas 𝐿.

We investigated spoofing (impersonation attack) by an adversary that attempts to choose its transmit strategy
(location and precoding) so that Bob estimates an AoA indistinguishable from that of Alice. The adversary
was allowed multiple antennas and can apply a complex precoding vector 𝒒. The core question addressed
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Figure 3.2: MSE vs SNR at Eve, with SNR at Alice equal to 15 dB, number of Bob’s antennas 𝑀 = 16,
Alice’s AoA 𝜃 = 0.4 rad.

was: under what conditions can Eve manipulate her transmitted signal such that the AoA at Bob is estimated
to be the same as Alice’s AoA, thus defeating AoA-PLA?

3.2.2 Numerical Results and Analysis

In [1] the attack feasibility was characterized via the MSE between the observations when transmissions are
received from the legitimate and adversarial nodes. In particular, closed form expressions for the MSE we
derived, showing an irreducible with the SNR discrepancy between the received signals under Alice and
Eve, even she employs optimal precoding to minimize the MSE, as exemplified in Fig. 3.2 for a particular
numerical setting. In further detail, our theoretical analyses demonstrated that the spoofing attack results in
an irreducible gap in AoAs. When Eve is not in the same direction as Alice , the AoA estimation error for
Eve’s signal cannot be made arbitrarily small by increasing the SNR or by optimal precoding. This leads
to a non-vanishing gap between legitimate and adversarial AoAs. This gap is determined predominantly by
geometric factors (AoA separation, array size), indicating that increasing the transmit power does not help
the attacker unless the geometric conditions are already favorable. In future works we will look into the
design of authentication beacons (pilots) to esnure a high AoA-PLA accuracy by indetifying the minimum
number of antennas and SNR.
Furthermore, in the ongoing work [2] we extended the analysis in [1] to derive fundamental limits in AoA
estimation under spoofing by emplying the machinery of MCRB. Our motivation lied in the fact that under
spoofing attacks, the true observation model may deviate from the assumed model. Considering the same
system model as in [1], we derived a closed form expression for the MCRB, as shown in AppendixMCRB.
From this analysis we conclude that:

1. MCRB versus Cramér Rao bound (CRB). The MCRB can be expressed as the sum of the CRB and an
error term. As a result, it is always greater than or equal to the CRB. When there is no mismatch in
the AoAs, the MCRB reduces to the CRB.

Dissemination level: Public Page 35/228



Deliverable D5.2
2. Irreducible error floor. The mismatch term does not depend on the noise variance. Consequently,

increasing SNR reduces only the CRB term, but the second term can create a non-vanishing error floor
at high SNR.

3. Dependence on spoofer location. The error term depends on the precoding, the adversarial position
and on array geometry.

4. Perfect alignment exemption. If the adversary aligns exactly with the assumed steering direction, no
mismatch exists.

5. Impact of array size. The CRB terms scales with 𝑀−3, while the error term scales with 𝑀−2; therefore
the relative importance of the mismatch term depends on 𝑀 in addition to the angular separations.

Furthermore, in a joint work with HEXA-X-II we considered the case where Bob is equipped with an
analog antenna array: 𝑁 antennas share a single RF chain and beamforming is implemented via analog
combiners [21]. In contrast to digital arrays, AoA estimation in analog arrays relies on multiple transmissions
with different beamforming vectors probing different directions.
Unlike in the case of digital array systems, analog arrays were shown to be vulnerable to AoA-based spoofing.
Successful impersonation required knowledge of the locations of Alice and Bob and of the combiners at Bob,
as well as sufficient transmit power at Eve. Nonetheless, when these conditions were met, both location-based
and code-based attacks were effective in falsifying the AoA and compromising the security of the AoA-PLA.
This contrasts with the robustness results for digital arrays MIMO systems.

3.3 Security Analysis of RIS-Assisted AoA-PLA Over Multipath Channels

3.3.1 Proposed Methodology

We studied AoA-PLA in a single-input multiple-output (SIMO) uplink scenario where the direct Alice–Bob
link was blocked and communication occurred via a reconfigurable intelligent surface (RIS) controlled by
Bob [4]. The system model included Alice as a legitimate transmitter with a single antenna, Bob as a (verifier)
base station (BS) with a ULA of 𝑀 antennas, and Trudy an single antenna adversary, using precoding to
impersonate Alice. Furthermore, we assumed Bob controls an 𝑁-element reflecting surface applying a
diagonal phase-shift matrix Ω = diag(𝑒 𝑗 𝜙0 , . . . , 𝑒 𝑗 𝜙𝑁−1). The system model is shown in Fig. 3.3.

Trudy

Alice Bob

scatterer

scatterer

RIS

scatterer

scatterer

Figure 3.3: RIS-assisted PLA system: Alice and Trudy communicate with Bob via a RIS; the direct Alice–
Bob link is blocked.
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Operation Number of CPU cycles

gen 819,475

sign 2,856,803

verify 871,609

Total 4,547,887

Table 3.1: Number of PU cycles for Dilithium 5 operations (source: IBM) for pk lenght= 2592, sign
length=4595 (Intel Core-i7 6600U (Skylake) CPU, implementation in C)

The RIS configuration Ω was optimized for communication (e.g., spectral efficiency), using methods from
prior work, and was assumed fixed during the PLA procedures. Bob performed AoA-PLA by estimating the
cascaded channel and using it as a feature, assuming an enrollment phase and a verification phase during
each new transmission. The adversary Trudy is assumed to know all channel matrices and is allowed to
choose a precoding vector 𝒒 and transmit power to maximize her impersonation success probability.

3.3.2 Numerical Results and Analysis

We derived mathematically an indistinguishability condition for this attack based on the AoA at the RIS. In
more detail, we have shown that:

• For single-path RIS–Bob channels, impersonation was feasible even with mismatched channel param-
eters: Trudy could always choose the transmission parameters such that the cascaded channel matched
Alice’s in distribution.

• For multipath RIS–Bob channels, indistinguishability required very stringent conditions: matching
AoAs at the RIS and proportional path gains across all paths. When these were not met, even the
optimal transmission parameters result in an irreducible error floor.

Monte Carlo simulations confirmed these conclusions: increasing the number of RIS–Bob paths significantly
enhances authentication robustness by limiting the attacker’s ability to mimic the legitimate user [4].

3.4 ML-enabled AoA-PLA PoC on a Real Dataset

3.4.1 Proposed Methodology

We experimented with AoA-based localization in an outdoor mMIMO OFDM system, focusing on its
robustness to impersonation attacks and its applicability to PLA [3]. We used a mMIMO digital array
outdoor dataset collected at the Nokia campus in Stuttgart, Germany, depicted in Fig. 3.4. CSI vectors were
available across multiple subcarriers and antennas, and AoA features were extracted using high-resolution
algorithms. The goal was to identify user trajectories (tracks), in LoS and NLoS and test the efficiency of
AoA-PLA, motivated by our work showing its robustness against impersonation in digital arrays [1, 2].
We performed extensive experiments comparing MUSIC and ESPRIT AoA estimators on the real outdoor
CSI dataset, evaluating both accuracy and computational efficiency. The dataset was processed via a sliding-
window technique; AoA features were then estimated per segment using MUSIC and ESPRIT, forming the
feature vectors used for ML. To address the heterogeneity between LoS and NLoS regions, we proposed a
hierarchical two-stage classifier as shown in Fig. 3.5
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Figure 3.4: Nokia campus in Stuttgart, Germany. The red rectangle denotes the mMIMO antenna array
mounted on top of a building, while the lines with arrows represent the trajectories (tracks) and their respective
directions. Red solid lines indicate NLoS tracks, while blue dashed lines represent LoS tracks.

Operation Number of CPU cycles

AoA estimation (window of 2000 samples) 2,423,998

LoS / NLoS 541,767

Specific track 553,541

Total 3,519,306

Table 3.2: Number of CPU cycles for AoA-based PLA including MUSIC and ESPRIT

3.4.2 Numerical Results and Analysis

We evaluated several base ML models, including logistic regression (LR), 𝑘-nearest neighbors (KNN),
random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), light gradient
boosting machine (LightGBM), and a stacking ensemble [3]. Since the publication of this work we have
tuned SVM models and reached classification accuracy of 100 for stage 1 and 99.9% for LoS and 99.6% for
NLoS for stage 2, with inference times of less than 2 msec.
Furthermore, we compared the AoA-based PLA with Dilithium 5 in terms of number of operations, and
verified that the number of CPU cycles for PLA remains competitively low as shown in Tables 3.1 and 3.2.
We also note that the AoA estimation is an inherent part of the link set-up to a particular user (and therefore
a necessary step for any crypto algorithm to take place), therefore allowing the fusing of the link set-up with
user authentication, resulting in reduced overall complexity and robustness.
This work serves as PoC for the feasibility of AoA-based PLA in a real outdoor environment. Online versions
are also under development using meta-learning and online learning. In our preliminary results, we have
reached accuracies of > 90% using a small initial fraction of the dataset and then using online learning.
Furthermore, we are working on CNN-based deep learning AoA estimation to reduce the computational
complexity demonstrated in 3.2 for the AoA estimation.
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Figure 3.5: The proposed hierarchical two-stage classifier for user identification.

3.5 Integration with the Architecture

These works collectively provide a detailed picture of AoA-PLA under adversarial conditions and realistic
propagation. We show that in digital array systems, impersonation attacks are feasible only under stringent
conditions: the attacker’s AoA must match the legitimate user’s AoA, and corresponding precoding and phase
alignment must be satisfied [1]. The work in [2] complements this by demonstrating that when the estimator
is misspecified, an irreducible error floor arises from spoofing, dependent on the adversary’s geometry and
precoding but not on SNR, providing another proof of AoA’s robustness as a PLA feature.
Furthermore, in [4] it is shown that multipath between a RIS and the verifier increases the rank of the effective
channel and limits an attacker’s ability to mimic the legitimate cascaded channel. Overall, spatial diversity
provided by multi-antenna digital arrays and multi-path harden AoA against spoofing.
Finally, experimental results on a real outdoor dataset in [3] demonstrate that AoA features, when combined
with hierarchical ML, can achieve high accuracy and robust LoS / NLoS discrimination. The fact that AoA
features support 100% LoS / NLoS discrimination and high track classification accuracy suggests that AoA
can serve as a jointly useful feature for both secure localization and authentication. It is further confirmed
that AoA remains robust against impersonation in digital arrays, thus offering a stable basis for ML-driven
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systems. We were able to achieve KPIs related to authentication accuracy (> 90%) and speed (< 2 msec).
The above research was integrated in the following components of the PLS closed loop in the monitoring,
analysis and actuation stages: CENS01, CENS03, CENS04.
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Chapter 4

RF Fingerprint Migration

Future 6G networks are expected to support a massive number of connected IoT devices. Securing billions
of connections presents a logistical challenge for standard protocols. While cryptographic authentication is
secure, it requires significant energy and processing power, which can create bottlenecks for low-cost sensors
with limited battery life. RFFI offers a non-cryptographic solution [22] to this problem. RFFI authenticates
devices by detecting unique hardware impairments created during the manufacturing process [23,24]. These
analog imperfections, such as clock jitter, digital-to-analog converter non-linearities, and power amplifier
distortions, act as a unique physical signature for the device. However, a primary obstacle for RFFI is receiver
variability [25]. Models trained on one receiver often fail to identify the same devices when deployed on
different hardware. In this chapter, GOHM presents a method to solve this scalability issue using UDA.

4.1 Background and Motivation

In future 6G deployments, IoT sensors will communicate with a heterogeneous infrastructure composed of
various access points and base stations. One of the major barriers to the wide-scale adoption of RFFI is
receiver variability [26]. This is a general challenge in RFFI, where models trained on one receiver often
fail to recognize the same devices when deployed on a different receiver. This degradation occurs because
the model inadvertently learns the unique analog characteristics of the receiver.
To maintain RFFI model stability in a large-scale network, packets from each new receiver need to be
collected, labeled, and used to retrain the models. This must be repeated for every new receiver deployed.
However, this process is prohibitive due to the high cost of data labeling and the operational downtime
required. The goal of this work is to eliminate the need for extensive retraining by developing a receiver-
invariant system capable of migrating a security model from a source receiver to a target receiver using
minimal unlabeled data for adaptation, and a small amount of labeled data to select the best performing
model. By enabling adaptation with minimal data from each new receiver, we aim to remove the logistical
and cost barriers associated with continuous model retraining.

4.2 Proposed Methodology

Each receiver hardware introduces unique analog distortions, including phase noise, I/Q imbalance, and
frequency-dependent gain variations [27]. When a model is trained on one receiver, it inadvertently learns
these receiver-specific characteristics along with the device fingerprints, causing a domain shift that prevents
the model from generalizing to new receivers. To address the domain shift caused by receiver hardware, we
propose a methodology based on UDA. Specifically, we utilize an ADDA-based framework [28]. The core
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objective is to align the feature distributions of the source and target domains so that the classifier remains
effective across different receivers.
The methodology utilizes a source encoder, a target encoder, and a domain discriminator. The process
operates in three distinct stages:

• Supervised Pre-training: First, a source encoder and a classifier are trained using labeled data from
the initial receiver (source domain). This establishes a baseline capability to extract discriminative
fingerprints from the source receiver.

• Adversarial Adaptation: We then initialize a target encoder for the new receiver. A domain discrim-
inator is trained to distinguish between feature representations produced by the source encoder and
those produced by the target encoder. Simultaneously, the target encoder is trained adversarially to
mislead the discriminator. This adversarial game forces the target encoder to map its input signals into
a feature space that is statistically indistinguishable from the source feature space, effectively removing
receiver-specific distortions without using target labels for adaptation, relying on a small labeled set
only for the final model selection.

• Inference: Finally, the adapted target encoder is combined with the original source classifier. This
allows the system to correctly identify devices on the new receiver by mapping their signals into the
shared, invariant feature space.

4.3 Numerical Results and Analysis

The performance of the proposed methodology was evaluated using the RF Fingerprinting Migration
Dataset1, created specifically for this project. Intermediate results demonstrate that the ADDA framework
significantly mitigates the performance degradation caused by receiver variability. Prior to adaptation,
transferring a model between different receivers resulted in a severe drop in classification accuracy. After
applying the proposed unsupervised adaptation, the system restored a substantial portion of the lost perfor-
mance. While the adaptation does not always fully recover the source-level accuracy, it improves the results
enough to make the system operationally viable without requiring large-scale labeled data collection and
retraining from scratch.
Furthermore, detailed numerical results, including F1-score comparisons and confusion matrices, are pro-
vided in Appendix A.

4.4 Contribution to 6G Physical Layer Security

This work contributes to the design of resilient 6G PHY by enabling scalable security. By minimizing the
requirement for labeled retraining data, we reduce the operational overhead of PLS deployment. This aligns
with the 6G goal of automated network management where security mechanisms can self-adapt to hardware
changes and infrastructure upgrades with minimal human intervention.

4.5 Integration with the Architecture

The RF Fingerprint Migration solution defines the core logic of the CGHM01 component within the
“Monitoring” and “Analysis” block of the PLCL architecture. By ensuring that device identification remains
robust across different receiver nodes, this component maintains a continuous trust assessment of IoT devices
as they move between different access points.

1https://doi.org/10.5281/zenodo.14801935
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Chapter 5

Physical Layer-Based Device Fingerprinting
for Wireless Security: From Theory to
Practice

The transmitter identification is part of the security mechanisms to ensure authentication in wireless com-
munications. Conventional authentication approaches are cryptography-based, which, however, are usually
computationally expensive and not adequate in the Internet of Things (IoT), while devices tend to be low-cost
and with limited resources. In this study, UNIPD provides a comprehensive survey of physical layer-based
device fingerprinting, which is an emerging device authentication for wireless security. In particular, this
study focuses on hardware impairment-based identity authentication and channel features-based authentica-
tion. They are passive techniques that are readily applicable to legacy IoT devices. Their intrinsic hardware
and channel features, algorithm design methodologies, application scenarios, and key research questions are
extensively reviewed here. The remaining research challenges are discussed, and future work is suggested
that can further enhance the physical layer-based device fingerprinting.

5.1 Background and Motivation

The IoT is expected to significantly impact our lifestyles. According to IoT Analytics, the number of
connected devices reached 18.8 billion in 2024, an increase of 13% from 2023 [29]. These massively
connected IoT devices have transformed our everyday lives with exciting applications such as smart homes,
smart cities, connected healthcare, industry 4.0, etc. Wireless communications are preferred to connect these
devices seamlessly. There have been many techniques for IoT, including WiFi (IEEE 802.11), ZigBee (IEEE
802.15.4), LoRa, Bluetooth-Low-Energy, and narrowband IoT (NB-IoT).
This revolution requires security at all levels. Security is quite a broad topic, involving confidentiality,
integrity, availability, authentication, etc. This article will focus on device authentication, which is the first
important step for network security. The receiver verifies the legitimacy of the received signal by checking
specific features in the same signal. Our current computer and communications networks are protected by
cryptography-based approaches, including both symmetric encryption, such as advanced encryption standard
(AES), and public-key cryptography (PKC) such as Rivest-Shamir-Adleman (RSA). In particular, authenti-
cation is performed using a cryptographic challenge-response protocol based on symmetric encryption or
PKC. However, cryptographic solutions may not be applicable to IoT devices. Symmetric encryption requires
a pre-shared key, whose refresh turns to be challenging for IoT. PKC requires computationally expensive
algorithms, which often have severe power and computational limitations; hence, they are unsuitable for IoT
devices. In addition, at the dawn of quantum computing, PKC may be compromised due to the exponential
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increase in the computational power of attackers. Due to the above limitations, there is a lack of competent
IoT security solutions, and there have been many notorious security threats to IoT devices. This background
is driving the development of lightweight, yet secure technologies for the IoT. Regarding device authentica-
tion, the two most promising non-cryptographic approaches are physical layer-based device fingerprinting,
which includes hardware impairment-based RFFI and channel-based authentication. In detail,

• RFFI uses unique hardware impairments as the device identifier. Due to the imperfect manufacturing
process, the nominal values of hardware components slightly deviate from their specification. These
hardware impairments are unique and stable, which can be exploited as device fingerprints.

• Channel-based authentication exploits the channel characteristics through which the signal propagates
to identify the source (or, better, its location) at the receiver, taking advantage of the fact that signals
transmitted by devices at different locations travel through different channels (i.e., different delays and
attenuations for each path). Thus, the propagation environment, rather than the transmitting device
characteristics, and the relative position between transmitter and receiver, guarantee the authenticity
of the transmitter.

5.2 Survey Aims

This survey, whose full version is in [30], complements and extends the published surveys with a comprehen-
sive review of the physical layer-based fingerprinting for wireless security. We review the design principles
of both RFFI and channel-based authentication. We also compare these two approaches and discuss their
integration for more secure authentication mechanisms. Among the most promising and recent advances in
these areas, we mention the availability of new technologies (such as RIS), the use of new transmission bands
that fostered related technologies such as ISAC, the experimentation (thus with higher technology readiness
level) of physical-layer security mechanisms, and the use of maximum likelihood (ML) techniques to secure
transmissions by merging information coming from different communication layers. As unique features of
our survey paper, we cover topics from theoretical development to practical implementation and share our
experiences and insights on the design considerations of practical implementation. Thus, while looking at a
specific domain, it still provides a general framework to discuss solutions across different domains.

5.3 Future Directions and Research Gaps

5.3.1 Generative AI Approaches

Generative AI represents transformative AI technologies to create new content, such as GAN and large
language model (LLM). Generative AI has been widely used in securing communication from the physical
layer, but its application in device fingerprinting is relatively limited.
Generative strategies/architectures include autoencoders (AEs), variational autoencoder (VAE), diffusion
model, etc. They are used to design detectors in the anomaly detection context. They can also be used
to generate the training dataset, e.g, VAE is used to generate satellite data. This may allow a binary
classification-based detector to have an initial offline training with artificial but realistic data, later refined
online. In the context of anomaly detection, generative models may be used to generate an artificial dataset.
Regarding diffusion models, it is used for denoising in RFFI.
Recently, LLM have proven their effectiveness in multiple fields, even in the communication context. Still, no
solution that exploits LLM has been proposed in the device fingerprinting context. Due to their generalization
capabilities and if trained in a multimodal manner, thus taking as input also information concerning, for
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instance, the environment, LLM may be used to generate high-fidelity artificial datasets, thus leading to even
more robust detectors.
On the other hand, generative models may be used by the attacker to design effective attacks. In particular,
an attacker provided with the legitimate detector (or dataset used for training it) may exploit a generative
architecture to generate the attack samples that are most likely to fool the verifiers. Thus, future research
directions should also include these attacks into account.

5.3.2 Emerging Communication Technologies

While the use of device fingerprinting for securing communication technologies such as WiFi is consolidated,
for newer communication technologies, especially in the optical domain, only a few or even no work at
all considers device fingerprinting for securing communication. This is the case for underwater optical
communications, where, to the best of the authors’ knowledge, very little research has been done. Thus, a
research direction may involve the translation of the more consolidated solutions and algorithms into these
new technologies.

5.3.3 Interplay between RFFI and Channel-based Authentication

RFFI and channel-based authentication represent two distinct but complementary approaches to wireless
device authentication. RFFI relies on the unique hardware impairments inherent to individual devices,
which are introduced during the component manufacturing process. The RFFI system is implemented at the
receiver side, which is well-suited for scenarios where low-cost, infrastructure-independent security solutions
are required. In contrast, channel-based authentication exploits the unique properties of the wireless channel,
which are influenced by the surroundings; thus, it is effective in rich scattering environments, where it is hard
for the attacker to predict, replicate, and compensate for the attack signal to effectively mimic the legitimate
channel features.
The combination of RFFI and channel-based authentication offers a promising solution to enhance wireless
security. Hybrid authentication protocols can be designed: RFFI ensures device-level identification based on
unique hardware characteristics, while channel-based authentication validates location or monitors channel
characteristics within a communication session. In this case, attackers would need to simultaneously
replicate both the hardware impairments and the exact channel conditions to bypass the dual-layer protection,
significantly increasing the difficulty of attacks.
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Chapter 6

Detecting Signal Jammers Using
Spectrograms with Supervised and
Unsupervised Learning

Cellular networks are potential targets of jamming attacks to disrupt wireless communications. Since
the fifth generation (5G) of cellular networks enables mission-critical applications, such as autonomous
driving or smart manufacturing, the resulting malfunctions can cause serious damage. In [31], UNIPD
proposes to detect broadband jammers by an online classification of spectrograms. These spectrograms are
computed from a stream of in-phase and quadrature (IQ) samples of 5G radio signals. We obtain these signals
experimentally and describe how to design a suitable dataset for training. Based on this data, we compare two
classification methods: a supervised learning model built on a basic convolutional neural network (CNN)
and an unsupervised learning model based on a convolutional autoencoder (CAE). After comparing the
structure of these models, their performance is assessed in terms of accuracy and computational complexity.

6.1 Background and Motivation

The advent of fifth-generation (5G) technology promises very high data rates, low latency, and the support of
mission-critical applications. However, 5G networks are vulnerable to jamming attacks, which may cause a
denial of service (DoS) of critical applications, with potentially serious consequences on persons and things.
One approach to cope with the threat of jamming is the use of wireless intrusion prevention systems (WIPSs)
that monitor communication by analyzing features such as packet error rate (PER), bit error rate (BER),
and signal-to-interference-plus-noise ratio (SINR). Using such features at a relatively high abstraction level
(i) may be misleading since their high variation is typical in wireless channels and can, thus, only hardly
be attributed to a single cause, and (ii) has been shown to fail at detecting jammers that target essential
5G signaling channels, such as the signal synchronization block (SSB). At a lower abstraction level, we
find approaches that manipulate the 5G radio signals, e.g., by nulling some subcarriers and comparing the
received power on such subcarriers with a threshold. This not only lowers the data rate of the system but
also requires changes in current cellular network standards and systems. It is also inefficient since a simple
threshold can be easily evaded by an intermittent jammer.
From a methodological perspective, some early machine learning (ML) and deep learning (DL) models have
shown promising results through the direct analysis of received radio signals. Effective features were the
number of transmissions, the clear channel assessments, or the aggregate measurements on the link layer.
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Figure 6.1: FA and MD probabilities as a function of the threshold 𝜏 for the uniform noise generator with
the unsupervised learning approach.

6.2 Proposed Methodology

In [32], we propose a WIPS that obtains features directly from the radio signal at the physical baseband using
ML. Based on received in-phase and quadrature (IQ) samples, a stream of spectrograms is computed, which
is then used by a machine learning model to detect jammed signals. This process can be performed on a
separate system (called watchdog) and requires neither changes to the 5G architecture nor to its signals. The
watchdog can be functionally simple, as measuring received power requires only static parameterization,
without further processing the radio signals, e.g., for equalization or decoding. A spectrogram, or more
precisely, a power spectral density (PSD), can be still obtained from power measurements even when the
received signal power is too low for communication. This allows to detect jamming attacks even at very low
SINR – an important benefit compared to the mentioned approaches based on specific OFDM signals and to
approaches using link-layer measurements.

6.3 Numerical Results and Analysis

6.3.1 Unsupervised Learning

The training set is composed of samples taken from trusted situations, with cases divided equally between
an empty channel and an ongoing transmission.
From Fig. 6.1, we can see how the model distinguishes perfectly between the jammed and not-jammed cases.
This perfect detection is possible because the reconstruction error of the jammed case is approximately 50
times higher than the reconstruction error of the case without jamming.

Dissemination level: Public Page 47/228



Deliverable D5.2

10 7 10 5 10 3 10 1

Threshold

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y

False Alarm
Misdetection

Figure 6.2: FA and MD probabilities as a function of the threshold 𝜏 ∈ [0, 1] (with 𝑦 axis values normalized
to 1) for the uniform noise generator with the supervised learning approach.

6.3.2 Supervised Learning

The training set was composed of samples, equally distributed between the three cases: jammed, not-
jammed, and empty channel, not-jammed and ongoing transmission. The test set was composed of samples,
distributed in the same way as the training and validation sets.
Comparing the detection rates in Fig. 6.2 to the results obtained in the unsupervised scenario shows that
supervised learning reaches the highest accuracy. This becomes apparent by the absence of misdetection
events and by the large threshold interval without false classification. This benefit of supervised learning,
however, comes at a significant drawback that training is based on the signals of specific jamming attacks.
Even slightly changing these signals may allow an attacker to evade detection. Albeit showing slightly
worse performance, the unsupervised learning model is not based on specific attacks but models not-jammed
signals. A jamming attack is then detected as a significant deviation from this trusted state.

6.4 Integration with the Architecture

We have introduced a novel method to detect jamming attacks by examining the spectrogram with an
external jamming-detection device. The detection relies on a machine-learning model that functions as
a one-class classifier implemented via a convolutional auto-encoder. This approach forms part of the
PHY-Attack Identification module within the proposed ROBUST-6G architecture, as it analyzes measured
signals—specifically the spectrogram of the wireless spectrum used by a 6G cell—to pinpoint threats such
as jamming.
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Chapter 7

One-Class Classification as GLRT for
Jamming Detection in Private 6G Networks

Mobile networks are vulnerable to jamming attacks that may jeopardize valuable applications such as industry
automation. In [33], UNIPD proposes to analyze radio signals with a dedicated device to detect jamming
attacks. We pursue a learning approach, with the detector being a convolutional neural network (CNN)
implementing a generalized likelihood ratio test (GLRT). To this end, the CNN is trained as a two-class
classifier using two datasets: one of real legitimate signals and another generated artificially so that the
resulting classifier implements the GLRT. The artificial dataset is generated mimicking different types of
jamming signals. We evaluate the performance of this detector using experimental data obtained from a
private 5G network and several jamming signals, showing the technique’s effectiveness in detecting the
attacks.

7.1 Background and Motivation

6G networks are expected to continue to be pervasive in everyday life scenarios, even more than the previous
generation. Since they also support mission-critical applications such as smart manufacturing or autonomous
driving, they should be adequately protected against security attacks.
Nowadays, wireless intrusion prevention systems (WIPS) monitor the security status of the transmission
channel from the link layer up, aggregating measurements from the different communication layers. Several
attackers, however, have learned to hide their malicious behaviors at layer 2 and above. Thus, a recent trend
is to exploit the physical layer to provide security services. Here we leverage the recent work [32] that
introduced deep learning (DL) to detect jamming attacks. Any device that injects noise into the band used
for communication is considered a jammer, aiming at making the service unavailable to cellular devices. In
this context, jamming and anti-jamming strategies have been recently surveyed.
We consider the WIPS as a one-class classification problem, also called anomaly detection. Note that the
classifier also needs to detect jamming signals that have never been seen before, and on which it may not
have been trained. Indeed, assuming a specific attack pattern may even lead to vulnerabilities in the learned
detection model that an informed attacker may exploit. However, this constraint makes the design of anti-
jamming techniques more challenging. A typical solution of such a one-class classification problem is the
GLRT, which is used in various contexts. Still, this solution requires the knowledge of the statistics of received
signals in legitimate conditions, which may be problematic to obtain, due to the different characteristics of
the radio propagation environments where the private networks are deployed.
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Figure 7.1: FA (continuous) and MD (dashed) rates achieved by CAE (black) and CNN (green) for 𝑛 = 256
and uniform noise.

7.2 Proposed Methodology

We frame the WIPS as a one-class classification problem and tackle it by a GLRT implemented via supervised
learning, in particular a CNN. As proven in [33], under suitable hypotheses, a DL model trained with
supervised learning can indeed learn the GLRT, and thus can be used for one-class classification. Thus,
drawing inspiration from [33], the detector builds an artificial dataset for the jammer with uniform distribution
in the in-phase quadrature (IQ) sample domain and uses it during the training phase of the DL model. The
accuracy of the trained model is evaluated using samples taken from a real-world jammer, thus modeling
the discrepancy between the detector’s prior knowledge and the actual attack statistics. The trained model
performance is compared to the solution of [32] that uses CAE, a DL model that implements a full one-class
classification problem. The comparison is based on experimental data, where the detector, jammer, and 5G
base station are implemented as software-defined radios (SDRs).

7.3 Numerical Results and Analysis

We measure performance in terms of false alarm (FA) and misdetection (MD) rates for a variable threshold
of the machine learning output between 0 and 1. To simplify comparison, the thresholds providing MD and
FA rates of 10−2 are determined for each model. Then, for each pair of MD-FA curves, the distance between
the respective MD and FA thresholds will be measured. The resulting distance value per model can then be
compared among the models for a quick overview.
Fig. 7.1, 7.2, and 7.3 compare FA and MD rates achieved with both models for the three different jamming
cases, i.e., uniform, uniform over a frame, and Gaussian jamming.
With uniform noise, the CNN clearly shows a better performance than the CAE.
With frame-like noise the CNN still outperforms CAE. This is indicated by the separation between the FA
and MD curves for the CNN, which is 0.5 substantially wider than the separation of 0.35 with CAE. This is
a performance gain of 43% over the baseline.
With Gaussian noise, the CNN model reaches an even higher performance gain. CAE produces a separation
between the two curves of approximately 0.35, while the CNN produces a separation of approximately 0.75.
Thus, the CNN with artificial data outperforms the baseline by 114%.
In addition to 𝑛 = 256 IQ samples per bitmap, models created and tested with larger time windows were also
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Figure 7.2: FA (continuous) and MD (dashed) rates achieved by CAE (black) and CNN (green) for 𝑛 = 256
and uniform noise over a frame.
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Figure 7.3: FA (continuous) and MD (dashed) rates achieved by CAE (black) and CNN (green) for 𝑛 = 256
and Gaussian noise.
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studied. With a window size of 𝑛 = 1024 samples, the separation of the curves improves, compared to CAE,
but the gain is smaller than with 𝑛 = 256. A time window of 2048 samples, on the other hand, significantly
improved separation and gain for the case of uniform noise.

7.4 Integration with the Architecture

We have presented a further contribution with respect to our previous contribution of Chapter 6, refining
the classifier so that it performs a likelihood test, thereby linking it to statistical hypothesis-testing theory.
Although no dedicated demonstration component accompanies this solution, it has been thoroughly validated
through experiments with software-defined radios on a private 5G testbed created for this purpose.
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Chapter 8

Jamming Detection in Cell-Free MIMO
with Dynamic Graphs

Jamming attacks pose a critical threat to wireless networks, particularly in cell-free massive MIMO systems,
where distributed access points and user equipment (UE) create complex, time-varying topologies. In this
chapter (reported in its full version in Appendix I), UNIPD proposes a novel jamming detection framework
leveraging dynamic graphs and graph convolution neural networks (GCN) to address this challenge. By
modeling the network as a dynamic graph, we capture evolving communication links and detect jamming
attacks as anomalies in the graph evolution. A GCN-Transformers-based model, trained with supervised
learning, learns graph embeddings to identify malicious interference. Performance evaluation in simulated
scenarios with moving UEs, varying jamming conditions, and channel fadings demonstrates the method’s
effectiveness, which is assessed through accuracy and F1 score metrics, achieving promising results for
effective jamming detection.

8.1 Background and Motivation

Wireless communication increasingly adopts cell-free architectures to enhance connectivity and spectral
efficiency. Cell-free MIMO relies on access-points (APs) that jointly serve UEs without predefined cell
boundaries. This paradigm shift introduces new challenges related to network dynamics and security.
As reliance on wireless services continues to grow, security threats have become a major concern. Wireless
networks, due to the shared nature of the radio spectrum, are particularly vulnerable to jamming. In MIMO
wireless networks, traditional jamming detection methods rely on statistical models, which struggle to adapt
to the complexities of dynamic wireless environments. In contrast, DL techniques can be applied using a
data-driven approach. DL approaches, such as CNNs, have been employed to analyze spectrogram images for
jamming detection, outperforming conventional feature-based methods. Furthermore, federated learning has
been investigated for distributed jamming detection in flying ad-hoc networks. However, all these solutions
are agnostic of the network structures and are not suited for cell-free communications where synchronization
is looser. When users are mobile and channel conditions vary, modeling network behavior is crucial.
Dynamic graphs offer a powerful representation for the evolving topology of wireless networks, where
nodes correspond to APs and UEs, and edges represent communication links based on signal strength and
interference levels. To process and analyze dynamic graphs data, graph-neural-networks (GNNs) provides a
powerful framework. Inspired by CNNs, GNNs are designed to operate on graph structures, enabling tasks
such as node classification, link prediction, and other graph-related learning problems.

Dissemination level: Public Page 53/228



Deliverable D5.2

Figure 8.1: Accuracy and F1 score vs 𝜏, for the fading scenario. Training performed with a dataset having
𝜏 = 10.

8.2 Proposed Methodology

In this work, whose extended version is in Appendix I, we propose a novel framework to model cell-free
massive MIMO communication, exploiting dynamic graphs to capture the time variability of the commu-
nication scenario. Then, we present a novel approach for jamming detection, leveraging dynamic graphs
and GNN-based architectures. Our approach identifies jamming attacks by learning latent representations of
network states and monitoring deviations from expected patterns. We evaluate the proposed method using
simulations that model mobility, connectivity, and interference scenarios, demonstrating its effectiveness.

8.3 Numerical Results

Parameter 𝜏 represents the jammer activation frequency within each temporal sequence, where 𝜏 = 1
indicates sporadic jamming (active for only 1 out of 10 timesteps), 𝜏 = 5 represents moderate persistence
(active for 5 out of 10 timesteps), and 𝜏 = 10 denotes continuous jamming (active throughout the entire
sequence).
The fading scenario, shown in Fig. 8.1, reveals the specialist’s true generalization limitations and more
pronounced performance variations. While maintaining strong overall performance (accuracy range: 67.2%-
83.8%), the model shows increased sensitivity to jammer persistence patterns, however, a comparison has
been done on the same dataset using the known Long Short Term Memory GCN (GCN-LSTM) [34] which
combines the capabilities of LSTMs to extract temporal dependencies with the feature learning power of
the GCN, and as the figure shows, our model performed better in all projected jamming behaviours. The
performance progression from 𝜏 = 1 (67.2% accuracy) to 𝜏 = 8 (83.8% accuracy) demonstrates the model’s
adaptation to different temporal structures, with optimal detection occurring in the rhythmic jamming domain
(𝜏 = 6 − 8).
More results are reported in Appendix I.

8.4 Integration with the Architecture

We have introduced a novel method to detect jamming attacks using graph neural networks in cell-free
massive MIMO networks. We detect the jammer activity by monitoring the connectivity towards the base
stations, represented as nodes of the graph. This approach is part of the PHY-Attack Identification module
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within the proposed ROBUST-6G architecture, as it monitors the connectivity towards the 6G base-stations
to detect potential jammers.
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Chapter 9

Image-Based Frequency-Domain Analysis
for Robust DDoS Detection

In the paper [35], EBY gives an overview of a frequency-domain imaging framework that is used for detecting
DDoS attacks inside SDN networks. The main idea is that Packet-In traffic has many hidden patterns when
we look at it in the spectral domain, so the authors transform the temporal signal into two-dimensional images
by using full frequency information, including both magnitude and phase. This imaging approach allows
deep models, especially CNN-based classifiers, to learn traffic behaviors in a more clear way. The study
also reports numerical results, showing that the spectral images help the model separate normal traffic from
different DDoS attack types with high accuracy, and that adding the phase information brings noticeable
improvement compared to earlier works.

9.1 Background and Motivation

SDN centralizes the control plane, which concentrates traffic monitoring and decision making in a single
controller. This architectural feature increases vulnerability, since adversaries can overwhelm the controller
with spoofed Packet-In messages. Traditional anomaly detection either relies on simple thresholds or
handcrafted statistical features that often fail when attackers vary traffic shapes or spread attacks across
multiple spoofed addresses. Earlier work attempted to use frequency domain representations, but only used
Fourier magnitude, which removed structural information related to phase alignment. This study is motivated
by the need for a richer spectral representation that can capture small but consistent deviations in malicious
traffic and provide a robust signature for learning based classification.

9.2 Proposed Methodology

Figure 9.1: Proposed System.

The proposed detection framework begins by monitoring Packet-In messages received by the SDN controller
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Figure 9.2: Images representing four traffic types: (a) Normal, (b) TCP-SYN, (c) NTP, (d) DNS.

and generating a time series of message counts. As illustrated in Figure 9.1, the system consists of two
primary modules: (i) the Statistic Generation Module, which records Packet-In behavior and maintains a
hash table of destination IP occurrences; and (ii) the DDoS Detection Module, which processes the time-
series data using frequency-domain transformations. Discrete Fourier transform (DFT) is applied to sliding
windows of the time series to obtain both magnitude and phase representations of frequency components.
Unlike earlier work that used only magnitude values, the proposed method incorporates phase information
to preserve the full spectral structure of the traffic.
To maintain semantic relationships between the complex-valued frequency components, a similarity matrix
is constructed using the Hermitian product, forming a square image whose dimensions correspond to the
window size. After normalization and logarithmic scaling, either the cosine or sine plane of this matrix
serves as the final image representation. Multiple window sizes can be incorporated to capture both short-
and long-range frequency patterns effectively. These images encode rich temporal–spectral characteristics,
making them suitable for deep learning classification.

9.3 Results

Figure 9.2 demonstrates that each traffic type, including normal traffic, TCP-SYN floods, NTP amplification,
and DNS reflection attacks, produces distinctive visual patterns. These patterns enable robust discrimination
by a CNN trained on the generated images. The CNN architecture consists of convolutional, pooling,
and fully connected layers, totaling more than 10 million parameters. Using real-world MAWI traces and
emulated DDoS traffic, the proposed system achieves a true positive rate (TPR) of 99.96%, a false positive
rate (FPR) of 0%, and an overall accuracy of 99.98%, significantly outperforming earlier magnitude-only
frequency-domain approaches.
The authors acknowledge that the evaluation is performed within an emulated environment and that future
work should consider scaling to broader attack types and real deployment conditions. However, the results
demonstrate strong potential for integrating frequency-phase–based image representations into SDN security
monitoring.
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Contribution to 6G Physical-Layer Security

Although the study is positioned within the SDN domain, its methodology aligns closely with emerging
requirements of 6G PLS. The use of magnitude–phase spectral analysis resembles physical layer anomaly
detection techniques used for identifying jamming, spoofing, and replay behaviors. Converting spectral
patterns into images enables RF fingerprinting, device authentication, and waveform-level threat classifi-
cation, key components of 6G security architectures. The multi-window frequency representation mirrors
how 6G systems will analyze non-stationary spectral behavior, while the modular structure of Figure 9.1
can be mapped directly into O-RAN near-RT RAN intelligent controller (RIC) security agents. Overall, the
approach contributes a reusable methodological foundation for frequency-domain and image-based security
mechanisms in 6G networks.

9.4 Integration with the Architecture

Although the proposed solution focuses on detecting DDoS attacks at the SDN controller, its core method-
ology, which converts time-series behavior into frequency domain images and captures both magnitude and
phase characteristics, is highly relevant to physical layer attack detection (CEBY04). Many physical layer
threats, such as jamming, spoofing, replay, and abnormal waveform injections, produce distinctive spectral
signatures, irregular phase transitions, and non-stationary frequency patterns that cannot be reliably detected
with simple time domain features. By constructing similarity matrices from the full spectral representation
and training deep models to recognize image based spectral fingerprints, the method resembles how physical
layer security systems analyze RF waveforms to identify malicious transmitters or unusual signal behavior.
This spectral imaging approach naturally extends to 6G physical layer protection since future radios will rely
heavily on detecting subtle changes in frequency domain structure to identify intelligent jammers, RIS enabled
manipulation attempts, and adversarial waveform patterns, thereby making the proposed methodology a
strong foundation for next generation physical layer attack detection.
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Chapter 10

Radio Frequency Fingerprint-Based
Classification Performance Analysis with
ML Models in the Presence of Hardware
Impairments

In the paper [36], EBY looks at how well RF fingerprinting can classify different devices when realistic
hardware impairments are present, especially in the context of PLS. The idea behind RF fingerprinting
is that every wireless device creates small and unique distortions because of manufacturing differences,
such as RHI, CFO, and STO. These imperfections act like natural identifiers and can be used to check if
a transmitter is genuine or possibly malicious. In the study, two OFDM-based devices are modeled with
different impairment settings, and their received signals are processed to extract many physical-layer features,
for example spectral flatness, skewness, kurtosis, autocorrelation, power spectral density (PSD), L-moments,
mean, and variance. These features are then used to train several ML models that try to separate one device
from the other.

10.1 Background and Motivation

The proliferation of IoT devices in next generation networks demands lightweight authentication methods
that operate without relying entirely on cryptographic exchanges. RF fingerprinting offers such an approach,
because each device has unique distortions that originate from manufacturing tolerances. These imperfections
remain visible even when attackers transmit identical modulation formats. The study is motivated by the need
to understand how impairment levels, spectral distortions, and temporal irregularities influence classification
accuracy. Prior work did not systematically test multiple models under controlled impairment variations,
nor did it analyze the impact of feature reduction on classification performance.

10.2 Proposed Methodology

This study simulates two OFDM based devices with different levels of residual transmit and receive im-
pairments, including carrier frequency offset, symbol timing offset, and nonlinear transmitter distortions.
Signals pass through Rayleigh fading channels with additive noise. Therefore, the signal model incorporates
fading, additive Gaussian noise, CFO, STO, and RHI effects, enabling a realistic analysis of how impairments
shape RF fingerprints. From the received signals, the authors extract multiple feature groups: PSD features
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describing power distribution across frequency; spectral descriptors such as spectral flatness and bandwidth;
statistical moments of the I/Q components; L-moments capturing distributional shape; autocorrelation-based
parameters; amplitude–phase statistics; and a decision-boundary feature representing variance differences.
These diverse feature sets are used to train ML models including logistic regression, naive Bayes, support
vector machine (SVM), XGBoost, lightGBM, catBoost, and random forest. The dataset is split into an 80%
training set and a 20% test set, and performance is evaluated in terms of accuracy, precision, recall, and
F1-score.

10.3 Results

The results show that CatBoost consistently achieves the best classification performance, giving the highest
accuracy and F1-score among all tested models. Logistic Regression also performs well in terms of precision,
while naive Bayes remains weaker across several metrics. These differences can be clearly seen in Figure
10.1, where CatBoost provides the most stable and highest overall scores when all features are used.

Figure 10.1: Performance score analysis of classification with all features.

To reduce computational load, the study applies recursive feature elimination (RFE) so that the models are
trained with fewer but more important features. As shown in Figure 10.2, the performance after RFE remains
almost the same, and CatBoost again provides the strongest accuracy and F1-score. This shows that the
system can operate in a more lightweight way without losing classification quality.
Overall, the study demonstrates that hardware impairments generate measurable and discriminative RF fin-
gerprints, and that ML-based classification stays robust even under noise, fading, and impairment variations.
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Figure 10.2: Performance score analysis of classification using selected features based on RFE.

The results also show that CatBoost is especially suitable for this task, both with full feature sets and with
reduced ones after RFE.

Contribution to 6G Physical-Layer Security

The methodology directly contributes to future 6G physical-layer security by demonstrating how impairment-
induced spectral and statistical signatures can be used for device authentication, rogue transmitter detection,
and waveform-level trust mechanisms. As 6G moves toward zero-trust radio access, O-RAN security agents,
and large-scale IoT deployments, the ability to classify devices using inherent RF fingerprints becomes
essential. The findings show that even under fading and hardware distortions, RF fingerprint features remain
stable and discriminative, enabling lightweight, real-time physical layer defenses. The feature groups used
in this study, such as PSD variations, L-moments, skewness/kurtosis, and amplitude–phase statistics, closely
align with signal-level intelligence envisioned for 6G networks, making the approach a strong candidate for
scalable and secure 6G PLS frameworks.

10.4 Integration with the Architecture

This study is directly relevant to attack detection (CEBY04) because RF fingerprinting provides a powerful
way to identify unauthorized or spoofed transmitters by exploiting natural hardware imperfections that cannot
be easily imitated or cloned by an attacker. By analyzing how residual impairments, carrier frequency offset,
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timing offset, and statistical irregularities appear in spectral and temporal features, the method allows ML
models to distinguish legitimate devices from impersonators even when an adversary uses the same protocol,
modulation, or transmission pattern. Since many physical layer attacks rely on transmitting forged signals that
appear legitimate in the time domain, device specific hardware impairments become a reliable discriminator
that reveals subtle inconsistencies in the attacker’s waveform. The study shows that even under noise,
fading, and varying impairment levels, these hardware induced signatures remain stable enough to support
accurate classification, which directly translates to detecting rogue IoT nodes, cloned device identities, and
sophisticated physical layer level spoofing attempts. This makes the proposed RF fingerprinting approach
a highly relevant and practical foundation for next generation attack detection in future wireless and 6G
environments.
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Part II

T5.2 - Design of Resilient 6G PHY,
Incorporating Physical Layer Security
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Chapter 11

Secret Key Generation with Attestation and
Physical Layer Fingerprinting

SKG is essential in wireless systems where links change quickly, and devices operate without fixed infras-
tructure. Existing methods either rely purely on cryptographic exchange (e.g., ECDH) or use physical-layer
reciprocity, but neither verifies whether the participating devices are in a trusted software state. This leaves
key establishment exposed to impersonation, software compromise, and channel manipulation. CHA in this
work defines an Attested Secret-Key Generation (A-SKG) protocol that addresses these gaps. The protocol
combines authenticated ECDH, certificate-based identity checks, and signed integrity measurements with
physical-layer features (such as AoA, angle-of-departure (AoD), path loss). The final key is derived from
both the DH secret and reconciled locally measured channel features, ensuring that only devices in a verified
state and physically present on the link can derive it. The result is a minimal protocol that provides: (i)
identity binding, (ii) integrity-verified participation, (iii) resistance to replay attacks, and (iv) channel-tied
key derivation without transmitting raw measurements. This work specifies the system model, adversary
model, and protocol functions used in the final A-SKG design.

11.1 Background and Motivation

SKG from physical-layer measurements is increasingly required in wireless systems where keys must reflect
both device identity and channel conditions. Classical SKG mechanisms provide channel reciprocity but lack
two properties needed in security-critical IoT deployments: (i) assurance that devices are running verified
software, and (ii) cryptographic binding between physical-layer entropy and the authenticated key-exchange
state.
Remote attestation protocols such as PROVE [37], SHeLA [38], SARA [39], and PADS [40] provide
software-integrity evidence but operate independently of SKG and do not incorporate channel-specific
entropy. Conversely, SKG protocols treat devices as inherently trustworthy and ignore adversaries capable
of software compromise, key substitution, or replay. This separation leaves a gap: keys may be derived
from valid channel measurements, but by an untrusted or compromised device. This work closes that gap
by combining attestation with SKG in a single protocol run. We extend a standard attested key-exchange
workflow with physical-layer features (AoA, AoD, and path loss) produced in section 2.2. Both parties derive
the session key as:

𝐾A-SKG = HKDF (𝑆DH ∥ ΦPL, salt = 𝑁𝑁 ∥ 𝑁𝐴𝑃 ∥ transcript hash)

The designed protocol ensures that no physical-layer data is exchanged; each device derives its own measure-
ments locally and incorporates them into its key-generation state. The protocol provides (i) verified device
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identity through certificate checks, (ii) integrity evidence via signed configuration hashes, (iii) freshness
through nonces and transcript hashing, and (iv) a session key that is tied to link-specific physical-layer char-
acteristics. Key confirmation is enforced through AEAD. By coupling attestation with SKG, the protocol
reduces the time-of-check-to-time-of-use gap [41]: the device that proves its software integrity is the same
device that derives the session key, and the derivation is bound to both its attested state and the handshake
transcript. Only devices that are authenticated, verified, and physically present on the link can compute the
final key.

11.2 State of the Art

11.2.1 Remote Attestation for IoT

Remote attestation verifies the integrity of software running on untrusted devices. Traditional attestation
follows a challenge-response pattern where a trusted Verifier sends a nonce to an untrusted Prover, which
computes a measurement (hash) of its firmware and returns a signed or MAC’d response.
Software-based attestation relies on timing constraints to detect compromised code, but requires strict network
assumptions unsuitable for wireless IoT. Hardware-based attestation uses Trusted Execution Environment
(TEE)s like ARM TrustZone [42] or TPM [43], providing stronger security at a higher cost. Hybrid attestation
schemes like SMART [44], TrustLite [45], and TyTAN [46] use minimal hardware (e.g., Read-Only Memory
(ROM) and Memory Protection Units (MPU)) to protect attestation code while remaining cost-effective.

11.2.2 Collective Attestation Protocols

SEDA [47] performs attestation over spanning tree topologies, with each device attesting its children and
aggregating results upward. SEDA requires network stability and full connectivity during attestation.
LISA [48] improves SEDA by supporting asynchronous attestation propagation without strict parent-child
relationships. PADS [40] addresses highly dynamic topologies by using consensus algorithms rather than
spanning trees. Specifically, devices self-attest at random intervals and broadcast results to neighbors,
eventually converging to network-wide knowledge. SARA [39] attests distributed IoT services using publish-
subscribe communication with vector clocks to track causality among asynchronously interacting services.

11.2.3 Physical Layer Secret Key Generation

Physical-layer SKG leverages the inherent randomness and reciprocity of wireless communication channels
to enable two legitimate devices to extract shared cryptographic keys directly from the radio environment.
To analyze the achievable secret key rate (SKR) under practical impairments, such as channel estimation
and quantization errors, a mutual information neural estimator (MINE) [49] is employed in [50]. In [51],
the authors propose a mutual information-driven autoencoder (MIAE) that learns reciprocal channel features
while directly optimizing the SKR through end-to-end training. Alternatively, [52] introduces an approach
that uses a predefined key and exploits obfuscation matrices with CSI as the carrier to aid secure key
transmission.

11.2.4 Research Gap

Existing attestation protocols assume pre-established keys or computationally expensive per-device public-
key operations [53, 54]. SKG protocols focus on key generation without addressing device integrity. To the
best of our knowledge, no prior work integrates remote attestation with physical-layer key generation in a
single protocol that jointly verifies device identity, software state, and physical proximity. Recent data-driven
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methods for extracting channel features have improved SKG robustness, but they operate independently of
attestation and do not provide end-to-end trust guarantees.

11.3 Proposed Methodology

11.3.1 System Model

We consider a wireless setting where a resource-constrained device (i.e., node N) establishes a secure session
with an AP. Both entities hold long-term credentials issued by a trusted Certificate Authority (CA), and
no pre-shared secrets are assumed. Trust is established through certificate verification and a cryptographic
handshake.
A key requirement of this setting is that session establishment must include integrity evidence. The node and
the access point must each supply a verifiable measurement of their current software state before a session
key is derived. In addition, the final key must depend on both the exchanged cryptographic material and the
wireless channel, ensuring that only devices at the same physical location can compute it.
The system model, therefore, consists of three components: the node and access point as communicating
devices, and the certificate authority as the identity root. Each entity operates within a defined trust boundary
that governs how identity, integrity, and channel information contribute to the resulting secure session.

Entities Node (N). A resource-constrained wireless device requiring authenticated network access. Nodes
are provisioned with long-term cryptographic credentials, hardware-specific identifiers, and trusted execution
capabilities for attestation and key derivation operations.
AP. Infrastructure device providing wireless connectivity and authentication services. APs maintain long-
term credentials, hardware identifiers, and trusted execution environments for protocol operations. APs also
maintain connectivity to backend services for policy enforcement and audit logging.
CA. Trusted entity responsible for issuing and managing device certificates that bind public keys.

11.3.2 Communication Model

The model consists of two legitimate entities, Alice and Bob (for convenience, we refer to the node and AP
as Alice and Bob in the SKG communication model), operating in time division duplex (TDD) mode and
aiming to establish secure communication. The objective is to generate shared secret keys by leveraging the
reciprocity of the wireless channel. We assume the presence of a passive eavesdropper, Eve, who remains
silent and is located more than half a wavelength away from both legitimate nodes. Under this assumption,
the wireless channels from Alice and Bob to Eve are considered uncorrelated with the legitimate reciprocal
channel, ensuring that Eve gains negligible information from the exchanged signals. The overall SKG
pipeline includes channel probing, feature extraction, quantization, information reconciliation, and privacy
amplification.

11.3.3 Trusted Execution Environment

Both Node and AP include a TEE providing isolation and attestation capabilities. The TEE maintains:

1. Isolated memory and code execution context protected from application software and device drivers.

2. Secure key storage with hardware-enforced access controls preventing unauthorized extraction.

3. Monotonic counter or secure clock for freshness verification and replay prevention.
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4. Attestation code stored in read-only memory, protected from firmware modification attacks.

5. Key zeroization routines that securely erase ephemeral material immediately after use.

11.3.4 Protocol Overview

The protocol establishes a session key between a Node and an Access Point through three concrete operations:
authenticated key agreement, integrity verification, and physical-layer binding. These operations occur in
two phases.
Phase 1 (Functions 1–3) performs mutual authentication and integrity assessment. Node and AP exchange
certificates and validate identities against the trusted CA. Both parties run ECDH to derive a shared secret
𝑆𝐷𝐻 and bind the ephemeral key exchange to long-term identities through digital signatures. Nonces 𝑁𝑁
and 𝑁𝐴𝑃 provide freshness. Each device computes and signs a golden hash of its current firmware and
configuration state. Signature verification confirms that both parties hold valid certificates and that no
device has been compromised. This phase establishes an authenticated AEAD channel 𝐾𝐸 for subsequent
communication.
Phase 2 (Functions 4–5) derives the final session key using physical-layer features. Each device obtains
its locally measured channel characteristics, such as angles, path loss, from the section 2.2 system. These
measurements are quantized and locally processed without transmission. Both parties derive the session key:

𝐾A-SKG = HKDF (𝑆𝐷𝐻 ∥ ΦPL, salt = 𝑁𝑁 ∥ 𝑁𝐴𝑃 ∥ transcript hash)

11.3.5 Adversary Model

We assume a powerful adversary controlling the entire wireless network and capable of interacting arbitrarily
with all protocol messages. The attacker can delay, drop, reorder, inject, replay, and modify packets. The
attacker may compromise device software but cannot break trusted hardware, extract keys from secure
storage, or modify ROM or TEE code. In line with the state-of-the-art swarm attestation protocols [53, 54]
we assume the following adversarial capabilities:
Software Compromise (AdvSW).The adversary gains full control over non-TEE software on a device.
This includes modifying application code, altering configuration, and accessing all non-protected memory.
However, AdvSW cannot:

1. Access private signing keys stored in secure storage

2. Modify ROM-resident reference values

3. Tamper with TEE-executed attestation routines

4. Forge signatures without the corresponding private key

Ephemeral-Covering Malware (AdvMSW). The adversary may restore the system to a clean state before
attestation executes to hide prior modifications. AdvMSW cannot forge nonce-bound attestation outputs or
reconstruct valid measurement signatures. This adversary is standard in RA literature to capture self-erasing
malware behavior.
Passive Physical-Layer Observer (AdvPNI). The adversary can observe all wireless transmissions but
cannot infer local channel measurements that are not transmitted (AoA, AoD, path loss). AdvPNI cannot
force two honest devices to observe matching physical-layer features without physically occupying the link.
AEAD prevents the extraction of any attestation or key-agreement material from observed ciphertext.
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Physical Invasive Attacker (AdvPI). The attacker obtains direct physical access to hardware, including
bus probing or TEE key extraction. Such attacks are out of scope unless devices deploy tamper-resistant
hardware.

11.3.6 Out-of-Scope Threats

We exclude: (i) compromise of the Certificate Authority or measurement subsystem, (ii) full network-wide
denial-of-service attacks, (iii) attacks requiring quantum computational capabilities, and (iv) undetectable
supply-chain compromise.

11.4 Protocol Description

We denote protocol participants, cryptographic values, physical-layer measurements, and protocol state using
the following notation, organized by functional category.

11.4.1 Notation
Entities

𝑁 Node

𝐴𝑃 Access Point

Long-Term Credentials

(𝑃𝑟𝑖𝑣𝑋, 𝑃𝑢𝑏𝑋) Long-term key pair for entity 𝑋

𝐶𝑒𝑟𝑡𝑋 Certificate containing 𝑃𝑢𝑏𝑋 signed by CA

𝑃𝑢𝑏𝐶𝐴 CA public key (trusted, provisioned at manufactur-
ing)

Ephemeral Keys

(𝑃𝑟𝑖𝑣𝐷𝐻𝑋
, 𝑃𝑢𝑏𝐷𝐻𝑋

) Ephemeral key pair for entity 𝑋

𝑆𝐷𝐻 Shared ECDH secret

𝐾𝐸 Handshake AEAD key derived from 𝑆𝐷𝐻

𝐾A-SKG Final session key

Freshness Values

𝑁𝑁 Node nonce (256 bits, fresh per session)

𝑁𝐴𝑃 AP nonce (256 bits, fresh per session)

Physical-Layer Measurements

𝐻𝑁𝐴
Node’s channel state information from T5.1

𝐻𝐴𝑃 AP’s channel state information from T5.1

𝑉𝑁 Node’s extracted physical-layer feature vector

𝑉𝐴𝑃 AP’s extracted physical-layer feature vector

𝐶𝑁 Node’s commitment to 𝑉𝑁 : 𝐶𝑁 = 𝐻 (𝑉𝑁 ∥ 𝑁𝑁 ∥
𝑁𝐴𝑃)

𝐶𝐴𝑃 AP’s commitment to 𝑉𝐴𝑃: 𝐶𝐴𝑃 = 𝐻 (𝑉𝐴𝑃 ∥ 𝑁𝑁 ∥
𝑁𝐴𝑃)

ΦPL Quantized physical-layer feature vector
= {𝐴𝑜𝐴, 𝐴𝑜𝐷, 𝑃𝐿}

Protocol State

transcript hash Cumulative hash of all protocol messages to current
point

𝐺𝐻𝑁 Golden hash: 𝐺𝐻𝑁 = 𝐻 (𝐻𝑊𝐼𝐷𝑁 ∥ 𝐹𝑊𝑁 ∥
config𝑁 )

𝐺𝐻𝐴𝑃 Golden hash: 𝐺𝐻𝐴𝑃 = 𝐻 (𝐻𝑊𝐼𝐷𝐴𝑃 ∥ 𝐹𝑊𝐴𝑃 ∥
config𝐴𝑃)

Timestamp Monotonic counter or secure clock value for tempo-
ral ordering

Dissemination level: Public Page 68/228



Deliverable D5.2
11.4.2 Function 1: Initial Connection Request

Function 1 establishes the initial communication context by exchanging identities and fresh nonces. This step
provides unilateral AP authentication through certificate disclosure and ensures freshness for all subsequent
protocol messages. The nonces and initial transcript hash serve as binding values for later DH parameters,
attestation evidence, and physical-layer measurements, anchoring them to a single protocol instance.
Protocol Steps

1. Node→ AP: Initial Nonce and Identity

𝑁𝑁 ← random(256 bits)
𝑀1 = {𝐼𝐷𝑁 , 𝑁𝑁 }

Node sends 𝑀1 to AP.

2. AP→ Node: AP Identity, Certificate, and Fresh Nonce

𝑁𝐴𝑃 ← random(256 bits)
𝑀2 = {𝐼𝐷𝐴𝑃, 𝑁𝐴𝑃, 𝐶𝑒𝑟𝑡𝐴𝑃}

AP sends 𝑀2 to Node.

3. Both Parties: Transcript Initialization

transcript hash← 𝐻 (𝑀1 ∥ 𝑀2)

Security Properties

• Freshness. Random nonces 𝑁𝑁 and 𝑁𝐴𝑃 ensure each protocol instance is unique and resistant to
replay attacks across sessions.

• Early AP Authentication. The AP provides𝐶𝑒𝑟𝑡𝐴𝑃 in 𝑀2, enabling the Node to validate AP identity
before committing computational resources to key agreement operations.

• Transcript Binding. The initial transcript hash provides a cryptographic commitment to protocol
messages. All subsequent messages extend this hash, preventing message interleaving or replay across
different sessions.

11.4.3 Function 2: Certificate Exchange and Diffie–Hellman Establishment

Function 2 performs authenticated key agreement: each device verifies the peer’s certificate, exchanges
ephemeral DH public keys, and derives a handshake encryption key. Identity, nonces, and DH parameters
are cryptographically bound into the transcript.

Protocol Steps

1. Node→ AP: Certificate and Ephemeral DH Public Key

(a) Verify 𝐶𝑒𝑟𝑡𝐴𝑃 from 𝑀2 against 𝑃𝑢𝑏𝐶𝐴. Abort on verification failure.
(b) Generate ephemeral key pair: (𝑃𝑟𝑖𝑣𝐷𝐻,𝑁 , 𝑃𝑢𝑏𝐷𝐻,𝑁 ) ← KeyGenECDH()
(c) Construct: 𝑀3 = {𝐶𝑒𝑟𝑡𝑁 , 𝑃𝑢𝑏𝐷𝐻,𝑁 }
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(d) Send 𝑀3 to AP.

2. AP→ Node: Ephemeral DH Public Key

(a) Verify 𝐶𝑒𝑟𝑡𝑁 from 𝑀3 against 𝑃𝑢𝑏𝐶𝐴. Abort on verification failure.
(b) Generate ephemeral key pair: (𝑃𝑟𝑖𝑣𝐷𝐻,𝐴𝑃 , 𝑃𝑢𝑏𝐷𝐻,𝐴𝑃) ← KeyGenECDH()
(c) Construct: 𝑀4 = {𝑃𝑢𝑏𝐷𝐻,𝐴𝑃}
(d) Send 𝑀4 to Node.

3. Both Parties: ECDH and Handshake Key Derivation

(a) Compute shared secret:

𝑆𝐷𝐻 = ECDH(𝑃𝑟𝑖𝑣𝐷𝐻,local, 𝑃𝑢𝑏𝐷𝐻,remote)

(b) Construct DH-binding payload and sign:

tosign = (𝑃𝑢𝑏𝐷𝐻,𝑁 ∥ 𝑃𝑢𝑏𝐷𝐻,𝐴𝑃 ∥ 𝐼𝐷𝑁 ∥ 𝐼𝐷𝐴𝑃 ∥ 𝑁𝑁 ∥ 𝑁𝐴𝑃)

𝑆𝑖𝑔𝐷𝐻,𝑋 = Sign𝑃𝑟𝑖𝑣𝑋 (𝐻 (tosign))

(c) Derive handshake AEAD key:

𝐾𝐸 = HKDF (𝑆𝐷𝐻 , salt = 𝑁𝑁 ∥ 𝑁𝐴𝑃, info = 𝐻 (𝑀1 ∥ 𝑀2 ∥ 𝑀3 ∥ 𝑀4))

(d) Exchange AEAD-encrypted DH signatures:

𝑀5 = AEAD𝐾𝐸

(
AAD : 𝐻 (𝑀1 ∥ · · · ∥ 𝑀4), plaintext : 𝑆𝑖𝑔𝐷𝐻,𝑁

)
𝑀6 = AEAD𝐾𝐸

(
AAD : 𝐻 (𝑀1 ∥ · · · ∥ 𝑀4), plaintext : 𝑆𝑖𝑔𝐷𝐻,𝐴𝑃

)
(e) Verify received signatures. Abort on verification failure.
(f) Update transcript: transcript hash← 𝐻 (transcript hash ∥ 𝑀3 ∥ 𝑀4 ∥ 𝑀5 ∥ 𝑀6)

Security Properties

• DH Binding to Identity. DH public keys are signed together with long-term identities and fresh
nonces, preventing key substitution.

• Handshake Confidentiality. Signatures are encrypted under 𝐾𝐸 derived from the shared secret,
preventing eavesdroppers from observing DH bindings.

• Early Verification. Signature verification failures trigger immediate abort before further computation,
preventing DH mismatch attacks.

• Transcript Integrity. All messages are incorporated into the transcript hash, ensuring that modifica-
tion of any message invalidates all downstream cryptographic operations.
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11.4.4 Function 3: Integrity Evidence Exchange

Function 3 provides mutual software-integrity validation. Each device measures its firmware and configu-
ration, signs the result under nonce and transcript context, and transmits the attestation evidence under the
handshake AEAD key.
Protocol Steps

1. Node→ AP: Configuration Hash and Attestation Signature

(a) Compute configuration hash:

𝐻′𝑁 = 𝐻 (𝐹𝑊𝑁 ∥ config𝑁 ∥ 𝐻𝑊𝐼𝐷𝑁 )

(b) Construct attestation signature binding to nonce and transcript:

𝑆𝑖𝑔𝐻𝑁
= Sign𝑃𝑟𝑖𝑣𝑁

(
𝐻 (𝐻′𝑁 ∥ 𝑁𝑁 ∥ 𝑁𝐴𝑃 ∥ transcript hash)

)
(c) Send:

𝑀7 = AEAD𝐾𝐸

(
AAD : transcript hash, plaintext : (𝐻′𝑁 , 𝑆𝑖𝑔𝐻𝑁

)
)

2. AP→ Node: Configuration Hash and Attestation Signature

(a) Decrypt and verify 𝑀7: (𝐻′
𝑁
, 𝑆𝑖𝑔𝐻𝑁

) ← AEAD−1
𝐾𝐸
(𝑀7). Abort on verification failure.

(b) Compare 𝐻′
𝑁

against stored golden hash 𝐺𝐻𝑁 . Abort on mismatch (device not in expected
state).

(c) Compute own configuration hash:

𝐻′𝐴𝑃 = 𝐻 (𝐹𝑊𝐴𝑃 ∥ config𝐴𝑃 ∥ 𝐻𝑊𝐼𝐷𝐴𝑃)

(d) Construct attestation signature:

𝑆𝑖𝑔𝐻𝐴𝑃
= Sign𝑃𝑟𝑖𝑣𝐴𝑃

(
𝐻 (𝐻′𝐴𝑃 ∥ 𝑁𝑁 ∥ 𝑁𝐴𝑃 ∥ transcript hash)

)
(e) Send:

𝑀8 = AEAD𝐾𝐸

(
AAD : transcript hash, plaintext : (𝐻′𝐴𝑃, 𝑆𝑖𝑔𝐻𝐴𝑃

)
)

3. Node: Verification

(a) Decrypt and verify 𝑀8. Abort on failure.
(b) Update transcript: transcript hash← 𝐻 (transcript hash ∥ 𝑀7 ∥ 𝑀8)

Security Properties

• Nonce-Bound Attestation. Attestation signatures include fresh nonces from the current session,
preventing replay of measurements from prior sessions.

• TOCTTOU Prevention. AdvMSW cannot restore firmware after attestation because the signature
includes a transcript hash computed at attestation time; retroactively forging a valid signature requires
the private key.

• Authenticated Evidence. Digital signatures prevent forgery of integrity measurements. Only the
device holding the private key can produce a valid attestation.

• Policy Integration. Golden-hash comparison is performed locally; protocol does not mandate policy.
Backend services enforce trust decisions based on comparison results.
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11.4.5 Function 4: Attestation Token Generation

Function 4 generates signed attestation tokens binding device identity, integrity state, and physical-layer
commitments. Tokens provide non-repudiable evidence for post-protocol audit.
Protocol Steps

1. Node→ AP

(a) Fetch physical-layer features: 𝐻𝑁𝐴
= {𝐴𝑜𝐴, 𝐴𝑜𝐷, 𝑃𝐿}𝑇5.1

(b) Extract and quantize: 𝑉𝑁 = ExtractFeatures(𝐻𝑁𝐴
)

(c) Commit to features: 𝐶𝑁 = 𝐻 (𝑉𝑁 ∥ 𝑁𝑁 ∥ 𝑁𝐴𝑃)
(d) Construct token: 𝜏𝑁 = (𝐼𝐷𝑁 , 𝐻 (𝐶𝑒𝑟𝑡𝑁 ), 𝐻′𝑁 , 𝐶𝑁 ,Timestamp)
(e) Sign: 𝑆𝑖𝑔𝜏𝑁 = Sign𝑃𝑟𝑖𝑣𝑁 (𝐻 (𝜏𝑁 ))
(f) Send: 𝑀9 = AEAD𝐾𝐸

(𝜏𝑁 , 𝑆𝑖𝑔𝜏𝑁 )

2. AP→ Node

(a) Verify 𝑀9. Abort on failure.
(b) Fetch and process own features: 𝐻𝐴𝑃 = {𝐴𝑜𝐴, 𝐴𝑜𝐷, 𝑃𝐿}𝑇5.1

(c) Extract, quantize, and commit: 𝑉𝐴𝑃, 𝐶𝐴𝑃
(d) Construct token: 𝜏𝐴𝑃 = (𝐼𝐷𝐴𝑃, 𝐻 (𝐶𝑒𝑟𝑡𝐴𝑃), 𝐻′𝐴𝑃, 𝐶𝐴𝑃,Timestamp)
(e) Sign: 𝑆𝑖𝑔𝜏𝐴𝑃

= Sign𝑃𝑟𝑖𝑣𝐴𝑃
(𝐻 (𝜏𝐴𝑃))

(f) Send: 𝑀10 = AEAD𝐾𝐸
(𝜏𝐴𝑃, 𝑆𝑖𝑔𝜏𝐴𝑃

)

3. Node

(a) Verify 𝑀10. Abort on failure.
(b) Update transcript: transcript hash← 𝐻 (transcript hash ∥ 𝑀9 ∥ 𝑀10)

Security Properties

• Feature Privacy. Measurements never transmitted; only commitments exchanged.

• Measurement Binding. Commitments bind devices to local features, preventing adaptive attacks.

• Non-Repudiation. Signed tokens provide audit evidence tied to device keys.

• Session Isolation. Tokens include timestamp and transcript hash, unique per session.

11.4.6 Function 5: Secret Key Derivation and Confirmation

Function 5 derives the final session key from the DH shared secret and physical-layer measurements.
Information reconciliation ensures identical key derivation. Bidirectional key confirmation verifies successful
synchronization.
Protocol Steps

1. Node: Prepare Reconciliation

(a) Quantize measurements: bits𝑁 = Quantize(𝐻𝑁𝐴
)
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(b) Generate helper data: (sketch, parity) = Cascade.Gen(bits𝑁 )
(c) Send: 𝑀11 = AEAD𝐾𝐸

(sketch, parity)

2. AP: Reconcile and Derive Key

(a) Quantize own measurements: bits𝐴𝑃 = Quantize(𝐻𝐴𝑃)
(b) Reconcile: bits′ = Cascade.Rec(bits𝐴𝑃, sketch, parity)
(c) Abort if reconciliation fails (spatial mismatch).
(d) Derive key: 𝐾A-SKG = HKDF(𝑆𝐷𝐻 ∥ bits′, salt = 𝑁𝑁 ∥ 𝑁𝐴𝑃 ∥ transcript hash)
(e) Send confirmation: 𝑀12 = AEAD𝐾A-SKG (“AP-confirm”)

3. Node: Derive and Confirm

(a) Derive key: 𝐾A-SKG = HKDF(𝑆𝐷𝐻 ∥ bits𝑁 , salt = 𝑁𝑁 ∥ 𝑁𝐴𝑃 ∥ transcript hash)
(b) Verify 𝑀12. Abort on failure.
(c) Send confirmation: 𝑀13 = AEAD𝐾A-SKG (“Node-confirm”)

4. AP: Verify and Zeroize

(a) Verify 𝑀13. Abort on failure.
(b) Zeroize: Zeroize(𝑃𝑟𝑖𝑣𝐷𝐻 , 𝑆𝐷𝐻 , 𝐾𝐸 , bits𝑁 , bits𝐴𝑃, sketch, parity)
(c) Update transcript: transcript hash← 𝐻 (transcript hash ∥ 𝑀11 ∥ 𝑀12 ∥ 𝑀13)

Security Properties

• Mutual Confirmation. Bidirectional key confirmation ensures both parties derive identical keys.

• Forward Secrecy. Keys depend on ephemeral DH, not long-term credentials.

• Ephemeral Secrecy. All temporary material is zeroized immediately after key derivation.

11.5 Numerical Results and Analysis

11.5.1 Proof-of-Concept Implementation

The goal of the hardware PoC is to implement the Attested A-SKG protocol described in this chapter on real
hardware and measure its execution time on both ends of the link. The PoC focuses on:

1. Implementing the full attested key-exchange path (Functions 1–3 and key derivation without real
physical-layer entropy).

2. Measuring per-step and end-to-end latency on a constrained device and a less constrained host.
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Figure 11.1: Runtime for A-SKG generation for the Node and the Access Point.
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Hardware and Software Setup

Access Point AP. The AP role is implemented on a Raspberry Pi 5 with 8 GB RAM, running a standard
Linux distribution. All timing data reported for the AP side is collected on this device.
Node N. The node role is implemented as a separate process running on a local workstation (non-measured
side). For this PoC, end-to-end timing on the node is measured separately from the AP runs, but both devices
execute the same protocol logic for their respective roles.
Results. As shown in Figure 11.1, without network delays, the time from the initial handshake to completion
of the A-SKG procedure is, on average, 24.56 ms for the Node and 24.86 ms for the AP. The median
execution times across 10 runs are 20.70 ms and 18.91 ms, respectively. Within this total duration, the
SKG generation phase itself contributes only a very small portion of the cost: on average, 21.80 µs for the
Node and 31.51 µs for the AP, with corresponding median values of 21.89 µs and 23.92 µs. These results
indicate that the cryptographic and attestation operations dominate runtime, while the SKG component adds
negligible latency.

11.5.2 Security Analysis

Our protocol is designed to provide mutual authentication, software-integrity verification, and channel-
dependent key generation in the presence of a strong network adversary. The analysis below follows the
adversary model defined in 11.3.5.

11.5.3 Authentication and MITM Resistance

Mutual authentication is achieved through the certificate validation and signed DH bindings in Function 2.
Each party signs a hash of (𝑃𝑢𝑏𝐷𝐻,𝑁 ∥ 𝑃𝑢𝑏𝐷𝐻,𝐴𝑃 ∥ 𝐼𝐷𝑁 ∥ 𝐼𝐷𝐴𝑃 ∥ 𝑁𝑁 ∥ 𝑁𝐴𝑃) with its long-term key.
An active adversary attempting MITM must either (i) forge a valid signature under 𝑃𝑢𝑏𝑁 or 𝑃𝑢𝑏𝐴𝑃, or (ii)
obtain a CA-signed certificate for a dishonest key. Both contradict the EUF-CMA security of the signature
scheme and the trust in the CA. Since the DH public keys are included in the signed data, key-substitution
attacks are also prevented.

11.5.4 Integrity Verification and TOCTTOU

Integrity evidence in Function 3 is computed inside the TEE as 𝐻′
𝑋
= 𝐻 (𝐻𝑊𝐼𝐷𝑋 ∥ 𝐹𝑊𝑋 ∥ 𝑐𝑜𝑛 𝑓 𝑖𝑔X) and

compared against a golden hash. Attestation signatures include𝐻′
𝑋

together with (𝑁𝑁 , 𝑁𝐴𝑃, transcript hash).
A software adversary changing firmware must either produce a collision in the hash (against collision
resistance) or forge a valid signature on an inconsistent tuple. An ephemeral-covering adversary (AdvMSW)
cannot roll back to a clean state after using malicious code and still generate a nonce- and transcript-bound
attestation matching a previous configuration. This reduces TOCTTOU attacks where the measured state
differs from the state used during key establishment.

11.5.5 Key Secrecy and Forward Secrecy

The session key is derived as

𝐾A-SKG = HKDF
(
𝑆𝐷𝐻 ∥ ΦPL, salt = 𝑁𝑁 ∥ 𝑁𝐴𝑃 ∥ transcript hash

)
.

Under the Diffie–Hellman assumption, 𝑆𝐷𝐻 is pseudorandom given the public DH values; ΦPL is never
transmitted and remains unknown to the network adversary. Modeling HKDF as a PRF, 𝐾A-SKG is com-
putationally indistinguishable from random for an adversary who does not know 𝑆𝐷𝐻 or ΦPL. Since 𝑆𝐷𝐻
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is computed from ephemeral keys and these keys are zeroized after use, compromise of long-term signing
keys does not reveal past session keys (forward secrecy). AEAD protects all encrypted messages; observing
ciphertext does not leak information about 𝐾A-SKG beyond what is implied by the security of the primitives.

11.5.6 Replay, Transcript Manipulation, and Channel Binding

Fresh nonces (𝑁𝑁 , 𝑁𝐴𝑃) are generated per session and incorporated, together with all messages, in the
cumulative transcript hash. Any replay or reordering of 𝑀1–𝑀8 changes the transcript context and causes
verification failure of subsequent signatures or AEAD tags. This prevents replay of old runs and interleaving
of transcripts across sessions.
Channel binding is achieved by includingΦPL in the key derivation while never transmitting raw physical-layer
measurements. A passive observer (AdvPNI) learns neither ΦPL nor 𝑆𝐷𝐻 and therefore cannot reconstruct
𝐾A-SKG. An off-path attacker at a different location cannot force two honest devices to obtain consistent
AoA/AoD/PL values with non-negligible probability; any mismatch leads to divergent keys and failure in
the AEAD-based key-confirmation step. Thus, only devices that are mutually authenticated, in a verified
software state, and physically present on the same link can successfully derive and confirm the session key.
Unlike conventional authenticated key-establishment protocols, our protocol incorporates software-integrity
evidence into the key-derivation phase. This ensures that only devices in a verified state participate in the
exchange of ephemeral Diffie–Hellman values and subsequent key computation. Incorporation of physical-
layer features provides an additional binding to the wireless link, giving the resulting key a dependence
on channel conditions rather than solely on algorithmic secrets. Ephemeral DH keys and the erasure of
temporary material support forward secrecy in line with standard attestation practices.
Limitations. The protocol relies on elliptic-curve Diffie–Hellman and therefore does not offer post-quantum
security; replacing this step with a lattice-based KEM would address this limitation. The approach assumes
trustworthy and stable physical-layer measurements from the 2.2, which may not hold under strong radio-
frequency interference or adversarial manipulation of the environment. Finally, high mobility or severe
channel variability may reduce measurement correlation and impact key reconciliation reliability.

11.6 Conclusion

This work presented a point-to-point A-SKG protocol that combines authenticated key exchange, software-
integrity verification, and channel-dependent key derivation for wireless IoT settings. Physical-layer features
2.2 are incorporated directly into the key-derivation phase, removing the need for separate pilot-exchange
steps and keeping the protocol compact. The system model and adversary assumptions follow established
remote-attestation practice, and the protocol functions reflect the standard structure used in prior work:
freshness and identity establishment, authenticated Diffie–Hellman exchange, integrity measurement, and
session-key derivation. The final key is derived from both the ephemeral DH secret and locally observed
physical-layer features, ensuring that only devices in a verified state and sharing the same wireless link
complete the protocol. The security analysis shows that the protocol provides authentication, integrity
validation, replay protection, and channel binding under the stated assumptions.

11.7 Integration with the Architecture.

We developed an A-SKG mechanism that binds physical-layer properties of the devices to the established
session key. This approach ensures that only authenticated and integrity-verified devices that share the
same physical channel can derive the key, thereby simultaneously establishing trust and enabling secure
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communication. Within the ROBUST-6G architecture, this functionality maps to the Physical-Layer Trust-
worthiness and Analysis module, as it leverages channel characteristics to strengthen device authentication
and session-key derivation.
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Chapter 12

Fast and Robust Secret Key Generation

This chapter presents our contributions to the design of fast key agreement protocols, suitable for delay-
constrained and real-time applications, and providing measurable security guarantees.

12.1 Background and Motivation

Across the three papers [5–7], we generated research outputs on wireless SKG, moving from low TRL
works on the communication-theoretic modeling of LoS multipath channels, to a comprehensive study of
SKG design parameters under worst-case eavesdropping attacks, and, finally to a context-aware, real-time
SKG demonstrator on software-defined radios (SDRs). In these works, we delivered fast and lightweight,
quantum-resilient SKG, with applications to 6G and IoT settings, well suited for low-end devices. We
placed a strong emphasis on ensuring rigorous security guarantees (via conditional mutual information
and conditional min-entropy estimators) and on the practical feasibility and real-time operation employing
experimental measurement campaigns and demonstrators.
The SKG protocol followed the standard phases of i) randomness distillation and quantization, ii) reconcil-
iation, and iii) privacy amplification. As shown in Fig. 12.1 we considered two legitimate users, referred
to as Alice and Bob, exchanging complex pilots in a time division duplex (TDD) mode, while a passive
eavesdropper, referred to as Eve, intercepted all exchanged messages. We explicitly accounted for depen-
dencies in the legitimate and adversarial wireless links, moving beyond the idealized assumption of spatial
decorrelation at distances of half-wavelength (using Jakes model). The key length |k| was upper bounded by
the conditional min-entropy1

|k| ≤ 𝐻∞(r𝐴|r𝐸 , s𝐴), (12.1)

where r𝑚, 𝑚 ∈ {𝐴, 𝐵, 𝐶} denoted the reconciliation input vectors at Alice, Bob and Eve, respectively. Key
contributions of these works included:

• In [5] it was shown that LoS multipath channels can support non-trivial SKG rates when bandwidth
(BW), delay spread (DS) and multipath resolvability are properly accounted for.

• In [6], a comprehensive design analysis was provided in realistic LoS / NLoS and dynamic / static
settings, under “on-the-shoulder eavesdropping attacks”2 (eavesdropper in very close proximity to one
of the legitimate nodes). We analyzed how choices in sampling, quantization and code rate traded off

1While in pseudorandom number generators the min-entropy is used to evaluate randomness of generated sequences, in SKG we
need to account for Eve’s observations over the wireless links through the conditional min entropy.

2The term “on-the-shoulder-attack” was first coined in [55] to describe eavesdropping attacks at distances of a few wavelengths
from a legitimate node, as a worst case scenario.

Dissemination level: Public Page 78/228



Deliverable D5.2

Randomness
extraction

Quantization

Reconciliation

Privacy
Amplification

xA

rA

rA

key, k

Transmit Signal

Randomness
extraction

Quantization

Reconciliation

Privacy
Amplification

xB

rB

rA

key, k

BobAlice

sA

Eve

Figure 12.1: SKG protocol

with leakage and impacted the achievable key rates. We reached reconciliation rates above 99%,
which exceeds the WP5 stated KPI of 90%. Furthermore, we developed a ML based estimator of
conditional min entropy with inference times less than 0.2 msec.

• In [7], we participated with algorithmic contributions in a real-time (run-time < 1 msec), context-
aware SKG demonstrator, aligned with the WP5 stated KPI of authentication and key agreement
(AKA) of 5 msec. the demonstrator won the best demonstrator award in IEEE CNCS 2025, further
showcasing the impact of ROBUST-6G outputs.

Across all works, we kept an information-theoretic perspective on security while addressing real-world
constraints such as limited complexity, static channels, and on-the-shoulder eavesdroppers. The demonstrator
served as PoC for SKG under rigorous leakage guarantees and context-awareness; context-aware fast and
robust SKG is not just a theoretical possibility, but a feasible, alternative for key generation and distribution
in future 6G and IoT deployments.

12.2 Secret Key Generation Rates in LoS Multipath Channels

12.2.1 Proposed Methodology

In [5], we studied the feasibility of SKG when the received signal strength (RSS) is used as the source of shared
randomness over a frequency-selective LoS multipath channel in the presence of a passive eavesdropper (this
paper extends earlier results for the NLoS case). To this end, we derived the distribution of the received power
under LoS Rician fading as a mixture of 𝜒2 and Γ distributions, distinguishing the case where multi-path
components (MPCs) fell into the same delay bin versus different bins. In particular, we showed that when
all MPCs collapsed into the same delay bin (narrowband channel), the RSS variance increased, leading to an
increase in mutual information (MI); alternatively, when MPCs were resolved into distinct bins (wideband
channel), the RSS variance and MI decreased.
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Figure 12.2: MI vs SNR and and vs Rician factor K.

12.2.2 Numerical Results and Analysis

Using 3GPP TDL-E channel models, we numerically estimated MI via a machine-learning-based estimator
and studied its dependence on bandwidth (BW), delay spread (DS), Rician 𝐾-factor, and SNR. Numerical
results are shown in Fig. 12.2. For fixed 𝐾 and DS, increasing BW generally reduced MI, as MPCs become
more resolvable and RSS fluctuations per bin decrease. On one hand, for fixed BW, increasing DS similarly
reduced MI by spreading power over more resolvable taps. On the other hand, the Rician 𝐾-factor itself had
limited direct impact on MI compared to BW and DS; its effect mostly manifested through how LoS power
dominated or not the diffuse components. Finally, in higher SNR, MI saturated, but, remained sensitive to
BW and DS. Our numerical results showed decreasing MI as BW increased from 50 MHz to 500 MHz at DS
= 50 ns.
Our analysis revealed that LoS environments do not necessarily preclude SKG: the interplay of BW, DS and
MPC resolvability can still yield significant MI and thus non-zero SKG rates. However, the susceptibility of
SKG to on-the-shoulder eavesdropping is governed by the exact interference patterns of the MPCs at Eve,
not merely by geometric distance. The results motivated channel-aware adaptation of SKG parameters in
subsequent contributions.

12.3 Comprehensive Analysis of Achievable SKG Rates

12.3.1 Proposed Methodology

In [6], we bridged the gap between theory and practice by analyzing SKG rates as a function of both
channel characteristics and SKG protocol design parameters, and by validating our analysis through an
extensive measurement campaign with a realistic on-the-shoulder eavesdropper. In this work we addressed
the following shortcoming of existing literature on SKG:

1. For ease of mathematical analysis, the vast majority of published works has in the past assumed
spatial decorrelation when an eavesdropper is at distances more than half a wavelength away from
the legitimate users, therefore seriously underestimating information leakage. In this work, no such
assumption was made and we accounted for spatial dependencies even at very proximal distances (one
wavelength) through the use of experimental datasets in LoS and NLoS conditions.
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Figure 12.3: Set-up of experimental campaign for SKG.

2. Based on our experience, a key challenge in transitioning SKG from theory to practice was identified
in the real-time implementation of privacy amplification, which was rarely addressed in earlier works.3
In this work we employed the F-BLEU conditional min entropy estimator and further proposed a fast,
real-time implementation using long-short term memory (LSTM) networks.

3. A large body of prior works focused on optimizing the quantization / non-reciprocity mitigation and
the reconciliation rate. However, joint optimization of the SKG stages through careful parameter
fine-tuning was entirely missing. In this work, we implemented and optimized jointly all stages.
Interestingly, we have shown that increasing the quantization and reconciliation rates in silo, did not
lead to the highest achievable key rates due to increased leakage towards Eve, captured through higher
hashing rates at the privacy amplification.

12.3.2 Numerical Results and Analysis

We used the experimental campaign of our prior work [55] as shown in Fig. 12.3, in which three NI USRP-
2974 SDRs, were configured as Alice, Bob and Eve. The center frequency was 𝑓𝑐 = 3.75 GHz (wavelength
𝜆 ≈ 8 cm), with signal bandwidth 𝐵 = 70 MHz and sampling rate 𝑓𝑠 = 140 MHz. Eve was placed on a linear
positioner at distances 1𝜆 to 10𝜆 from Bob (8 cm to 80 cm), enabling a controlled on-the-shoulder attack.
For each Eve position, 105 chirps are exchanged to guarantee convergence of conditional min-entropy and
leakage estimates. We investigated four scenarios: LoS static, LoS dynamic, NLoS static and NLoS dynamic.
In the static scenarios measurements were collected overnight, while in dynamic scenarios fluctuations were
induced by moving a metal plate and by human or object motion in the room during daytime.
Randomness distillation was performed by convolving the received time-domain signals with a filterbank of
𝐾 raised-cosine filters (e.g. 𝐾 = 16 with roll-off 0.25), forming power measurements per subband. These
observations were quantized using multi-level quantization with𝑄 ∈ {4, 16} uniform levels per subband and
per channel realization. Information reconciliation was implemented via Slepian-Wolf Polar codes. Alice
sent a syndrome 𝑠𝐴 ∈ {0, 1} (1−𝑟 )𝐾 log2 𝑄, with code rate 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}; both Bob and Eve used
𝑠𝐴 to attempt error correction. The success of reconciliation depended on the number and positions of bit
errors, and was shown to be negligible < 1% in low code-rates 0.1 − 0.2.
For privacy amplification, we bench-marked our proposed solution against F-BLEAU [56], computing
conditional min-entropy as the difference between min-entropy and leakage. We further introduced a
conservative safety margin, compressing sequences by an extra 10% beyond the F-BLEAU estimate to

3Out of 43, 305 papers published on IEEExplore, only 1600 papers even refer to privacy amplification, and only a handful
investigate algorithmic implementations
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Figure 12.4: SKG rates over different combinations of design parameters as a function of the distance from
Bob (measured in wavelengths).

mitigate underestimation risks. For real time operation, we proposed an LSTM that had a recurrent layer
with 100 hidden units followed by a dense softmax output for multi-class conditional mutual information
based rate selection. It was trained with the Adam optimizer and categorical cross-entropy.
Our measurements showed how SKG rates depended jointly on the filterbank size 𝐾 , on the number of
quantization levels 𝑄, on the Polar code rate 𝑟 over each scenario (LoS / NLoS, static / dynamic) and on
the eavesdropper’s positions (distance from Bob from 1𝜆–10𝜆). Dynamic scenarios generally yielded higher
conditional min-entropy and SKG rates than static ones, as expected. However, even in static environments,
careful tuning of (𝐾,𝑄, 𝑟) yielded non-zero SKG rates. Our analysis highlighted that too high code rates
reduced reconciliation success and thus effective key rates, while too aggressive quantization (large𝑄) could
increase bit mismatch rate and reconciliation overhead, offsetting gains in raw entropy. Partial results are
depicted in Fig. 12.4 and 12.5.

12.4 Context-Aware SKG Demonstrator with Real-Time Implementation

12.4.1 Proposed Methodology

In this work, we participated with our algorithms in the full, end-to-end, context-aware SKG demonstrator
built by the Barkhausen Institut. The demonstrator integrated pilot exchanges, environment classification,
parameter selection, SKG protocol execution, real-time privacy amplification and intuitive visualization via
a physical LED key. The hardware setup used two USRP X410 devices acting as Alice and Bob, operating at
a carrier frequency of 5.5 GHz with sampling rate 491.52 MS/s, providing a usable bandwidth of 400 MHz.
The devices shared a common reference clock and time source to allow synchronized frame exchange. Each
frame consisted of a chirp of length 2048 samples and bandwidth 400 MHz, and a burst consisted of 5 frames
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Figure 12.5: SKG rates over different combinations of design parameters as a function of the code rate.

separated by 0.1 s, with a transmission delay of 0.01 s between Alice and Bob.

12.4.2 Numerical Results and Analysis

We captured real-time channel frequency responses (CFRs) in three different physical contexts, namely,
LoS static; NLoS static; and Dynamic (motion of antennas, people and objects). We extracted two families
of features from CFRs: i) momentary features, i.e., absolute and phase differences between CFR samples,
amplitude and phase of the dominant LoS component, and statistics (mean, variance, kurtosis, skewness).
ii) temporal variation features, i.e., cross-correlation between consecutive CFRs, rates of change in LoS
amplitude and phase, and PCA-based features summarizing temporal patterns. Based on the detected
context, we selected SKG parameters ( 𝑓 , 𝑙, 𝑟), where 𝑓 denoted the number of filters in the filterbank; 𝑙
the number of quantization levels; and 𝑟 the code-rate in reconciliation. The demonstrator implemented the
full SKG chain in real time (less than 1 msec), hinting that the WP5 KPI of AKA is less than 5 msecs is
within grasp. The final secure bits were displayed on a 3D-printed key equipped with LEDs controlled by
an ESP32 microcontroller, providing an intuitive visualization of the abstract digital key, shown in Fig.12.6
This demonstrator was awarded the best demo award in IEEE CNCS 2025, shown in Fig. 12.7

12.5 Integration with the Architecture

Taken together, our works traced our path from foundational analysis of LoS multipath channels for SKG to
a fully operational, context-aware, real-time demonstrator. Our development of a conditional min-entropy
estimator, combined with realistic leakage estimation and context-aware parameter selection, ensures that
we can quantify and control the information advantage of legitimate users over an eavesdropper, even under
stringent attacks. We have reported reconciliation rates of > 99% while for privacy amplification the
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Figure 12.6: Context-aware, fast and robust SKG.

Figure 12.7: Best demonstrator award at IEEE CNCS 2025

inference times were less than 0.2 msecs, while overall run-time for key generation in the live demonstrator
was inferior to 1 msec. As a result, these works are aligned with the stated WP5 KPIs of reconciliation more
than 90% and AKA of 5 msec (in conjuction with AoA-PLA with run-time of 2 msec as discussed in Chapter
3). The integration of these results is contained in our component CENS05 on fast SKG in the actuation
stage of the physical layer closed loop. Furthermore, the conditional min-entropy leakage estimator is part
of the secrecy and leakage analysis of the component CENS02.
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Chapter 13

Enhancing the Performance of CSI-Based
PLA Through Reconciliation and
Preprocessing

In this chapter we provide a synthetic view of our works [8–11] on the use of information reconciliation
and signal pre-processing to enhance the accuracy of PLA, addressing the issue of changing authentication
physical channel features (such as the CSI) due to time, frequency or spatially evolving statistics. These
works were shown to consistently enhance the accuracy of PLA when compared to state of the art approaches.

13.1 Background and Motivation

The computational complexity of classical cryptographic approaches based on public key distribution can
be a limiting factor for user authentication. PLA can be an interesting solution to complement existing
traditional approaches, e.g., in multi-factor authentication protocols. However, the precision and consistency
of PLA is impacted by random variations of wireless channel realizations between different time slots, which
can impair authentication performance. In [8] and [9], we focused on enhancing the accuracy of CSI-based
PLA by introducing the use of forward error-correcting codes in the form of reconciliation, as depicted in
Fig. 13.1. We note that this approach could be also applied in RF fingerprinting-based and AoA-PLA. The
proposed method employed a Slepian-Wolf coding scheme with Polar codes that allowed the reconciliation of
discrepancies between channel measurements over different time instances, in order to authenticate legitimate
users. The authentication decision was therefore based on the comparison between the reconciled vectors
followed by hypothesis testing. In addition, we derived closed-form expressions of the probability distribution
of the hypothesis test statistical variable and of the probability of false alarm and detection. The method was
first considered in a single user communication system using 1-bit quantization [8] and then extended in a
multiuser system that employed Lloy-Max quantizers with an arbitrary number of bits [9].
Furthermore, in [10, 11], we proposed an adaptive preprocessing technique to enhance the accuracy of
CSI-based physical layer authentication (CSI-PLA) alleviating CSI variations and inconsistencies in the
time domain. To this end, we developped an adaptive robust principal component analysis (A-RPCA)
preprocessing method based on unsupervised machine learning. The performance evaluation was conducted
using a PLA framework based on information reconciliation, in which the Gaussian approximation (GA)
for Polar codes was leveraged for the design of short codelength Slepian Wolf decoders. Furthermore, an
analysis of the proposed A-RPCA methods was carried out. Simulation results showed that compared to
a baseline scheme without preprocessing and without reconciliation, the proposed A-RPCA substantially
reduced the error probability after reconciliation and also substantially increased the detection probabilities
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Figure 13.1: Proposed authentication scheme including an offline (enrollment) phase at time 𝑡 and an online
(verification) phase at time 𝑡 + 1, 𝑢 ∈ {𝑎, 𝑚}

that reached 100% in both LoS and NLoS scenarios on the real dataset from Nokia campus (introduced in
Chapter 3). This work related to the KPI for more than 90% authentication accuracy, which was surpassed
with the proposed methods.

13.2 Physical Layer Authentication Using Information Reconciliation

13.2.1 Proposed Methodology

In this work we presented a reconciliation scheme to mitigate the impact of disparities in the CSI observed
in subsequent time slots by employing the principle of Slepian-Wolf decoding. This approach aimed to
reconcile the channel measurements during the enrollment phase to the ones during the verification phase.
The motivation for employing reconciliation lied in the observation that it is trivially used in physical
unclonable function based authentication (typically is referred to with the term fuzzy extractors) and secret
key generation from channel measurements as discussed in Chapter 12. It was proposed in this work, for the
fist time, to be used in CSI-PLA.
Each phase involved a quantization of the CSI, with the output vectors at time 𝑡 and 𝑡 + 1, both treated as
dithered codewords at the input of the reconciliation decoder, estimated with the use of helper data S. The
basic assumption was that if the measurements came from the same legitimate user, then the codewords at
time 𝑡 and time 𝑡+1 would coincide (i.e., the reconciliation would be successful), which would not be the case
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otherwise. The reconciliation decoder was assumed to output one reconciled vector at each time instance.
Note that to this end, the helper data S generated in the first phase was used by Bob in the authentication
phase to reconcile the newly obtained CSI at time 𝑡 + 1 to the previous one at time 𝑡. Then, to make a
decision during the online authentication phase, a hypothesis test was performed by Bob in order to identify
the legitimate user versus a potential impersonator.

13.2.2 Numerical Results and Analysis

In Fig. 13.2 and 13.3 we provided comparisons with state of the art methods without reconciliation.

Figure 13.2: Probability of detections vs Probability of false alarm compared to state of the art.

Figure 13.3: Probability of detection vs the SNR, compared to state of the art.

We provided closed-form expressions for the false alarm probability and the detection probability. In a
scenario of SNR = 15 dB and a false alarm rate of 10−3, our results showed that that the probability of
detection was close to one for code rates less than or equal to 0.2 and very small for code rates greater
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that 0.2. Simulation results confirmed also that our reconciliation-based method had better performance
than prior schemes. The fact that we used a small value of 10−3 for the false alarm probability allowed to
confirm the performance of our work in practical systems that need very low false alarm probabilities (e.g.,
in vehicular ad hoc network (VANET)).

13.3 Enhanced Multiuser CSI-based Physical Layer Authentication Based
on Information Reconciliation

13.3.1 Proposed Methodology

Our previous work was made more general by accounting multiuser interference. The wireless communica-
tion network considered is depicted in Fig. 13.4 and included legitimate nodes, referred to as Alice and Bob
(base station) as well as 𝑈 benign interfering legitimate users, In this network, Bob wanted to authenticate
Alice in the presence of the other legitimate users and an adversary Mallory that attempted to impersonate
Alice through a simple attack without the use of any precoder or other pre-processing techniques. The ob-
jective was to design a scheme based on CSI to distinguish Alice from Mallory in the presence of interfering
users. Each user was equipped with a single antenna and Bob was equipped with 𝑁𝑏 antennas.
We assumed that the communication occurred in a rich scattering environment and the distance among
users exceeded half of a wavelength. To simplify the system model, the channel attributes between dif-
ferent transmitter-receiver pairs were assumed to be spatially uncorrelated. The channel between the same
transmitter-receiver pair was described by a first order Gauss-Markov process and the dependence between
samples in the time domain is captured through the correlation coefficient 𝛽.

Figure 13.4: Multiuser system with interference

13.3.2 Numerical Results and Analysis

In Fig. 13.5 the impact of the SNR on the detection probability was studied. As the SNR increased, probability
of detection (PD) increased as subsequent CSI measurements were more correlated due to decreased noise.
The proposed scheme performed very well with a PD greater than 99.86%, while the performance of prior
methods was poor for low SNRs less than 10 dB.
Fig. 13.5 showed the detection probability as a function of 𝛽. We had a PD very close to 1 for 0.4 ≤ 𝛽 ≤ 1.
We therefore had excellent performance even for challenging scenarios of medium correlation coefficients
and our proposed scheme performed better than state of the art approaches. An assessment of the time and
memory complexities is given below.
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• Time complexity

The time complexity of the enrollment phase was evaluated as𝑂 (𝑁) +𝑂 (𝐿) +𝑂 (𝐿𝑠𝑛𝑁 log(𝑛𝑁)). The
time complexity of the authentication phase and the decision using hypothesis testing were respectively
given by 𝑂 (𝑈𝑁) + 𝑂 (𝐿) + 𝑂 (𝐿𝑠𝑛𝑁 log(𝑛𝑁)) and 𝑂 (𝐾). 𝐿𝑠 is the list size of the cyclic redundancy
check successive cancellation list decoding of the polar decoder and 𝐾 is the length of the reconciled
vectors.

• Memory complexity
The overall memory complexity required to perform the authentication process taking into account all
steps of the scheme was given by 𝑂 (𝑈) +𝑂 (𝐿) +𝑂 (𝐿𝑠𝑛𝑁).
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Figure 13.5: PD vs SNR, 𝑃𝐹𝐴 = 10−3
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Figure 13.6: PD vs 𝛽 for SNR=10 dB, 𝑃𝐹𝐴 = 10−3
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13.4 Channel State Information Preprocessing for CSI-based Physical-Layer

Authentication Using Reconciliation

13.4.1 Proposed Methodology

In these works we studied how preprocessing could further enhance CSI-PLA accuracy. We observed that
the main premise of CSI-PLA depended on the correlation between the channel measurements across the
offline and online phases and the underlying assumption of the hypothesis test that CSI observations would be
more correlated in the normal case than in the alternative. Additionally, even if two signals would be highly
correlated in some features, applying a preprocessing schemes independently across subsequent observations
could destroy that correlation, especially if the correlation was higher in the noisiest features dimension.
Consequently, adaptive schemes that took into account channel measurements from previous authentication
phases were needed.
In our recent works we presented a PLA framework based on an adaptive preprocessing techniques and
information reconciliation using polar codes to enhance the accuracy of CSI-based PLA and alleviate CSI
estimation variations and inconsistencies in the time domain. In particular, an adaptive robust principal
component analysis (RPCA) (A-RPCA) preprocessing was proposed. An analysis of the proposed A- RPCA
methods was carried out along with a study of its computational cost. Unlike the in our previous works [8]
and [9], in this work we employed a Gaussian approximation (GA) for designing polar codes instead of the
code construction that relies on the binary erasure channel (BEC). The main contributions of these works
were summarized as follows:

• A PLA framework based on an adaptive preprocessing technique denoted by A-RPCA was proposed to
enhance the accuracy of CSI-PLA and alleviate CSI estimation uncertainties and time-varying nature.

• The proposed adaptive preprocessing took into account both the CSI from the enrollment and the
authentication phases instead of applying the preprocessing indepen- dently across the phases. This
was achieved through an (offline) estimation of the correlation coefficient between the CSI from the
enrollment and authentication phases and it allowed to discriminate the the adversarial CSI from the
legitimate user’s CSI.

• A convergence analysis of the time-regularized principal component pursuit (TR-PCP) optimization
problem that was used in the proposed A-RPCA algorithm was carried out.

• We assessed the preprocessing and the PLA authentication performance with synthetic data and in
real-world scenarios, where a dataset from Nokia was used to distinguish between different users
(partial results presented below).

13.4.2 Numerical Results and Analysis

Figure 13.7 showed the track segmentation for both tracks we want to differentiate. One segment represented
the track of interest (Alice 1) to be detected, where the green squares represent the user position at time 𝑡
and the orange squares are the user location at time 𝑡 + 1. The red squares represented the user location at
𝑡 + 1 on the track (Alice 2) from which we wanted to distinguish the targeted user. Different communication
scenarios were considered where (Alice 1) and (Alice 2) were on LoS or NLOS tracks. We then had the
pairs (Alice 1, Alice 2): (LoS, LoS) = (track 6, track 11), (LoS, NLoS) = (track 6, track 1), (NLoS, LoS)
= (track 1, track 6) and (NLoS, NLoS) = (track 1, track 13). In the following, unless otherwise specified,
the parameters were defined as follows: code rate = 0.1, codelength 𝑁 = 128, SNR= 10 dB, number of
subtracks is 𝑁𝑠 = 46, 𝑛 = 1 bit quantizer.
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. . .

. . .

Alice

Alice 2 at time t+1

Alice

Figure 13.7: Tracks of Alice 1 and Alice 2 to be differentiated. Each Alice is on a single track because the
data corresponds to a walking user. The green and orange colors represent respectively Alice 1 locations at
time 𝑡 and 𝑡 + 1. The red color is Alice 2 location at time 𝑡 + 1.

First, we showed the ROC curves. For a code rate equal to 0.1 in Fig. 13.8 it was demonstrated the
effectiveness of the reconciliation scheme in real scenarios. In all cases, including that of CSI without
preprocessing, the RPCA algorithm and the proposed A-RPCA algorithm performed very well, while A-
RPCA had detection probabilities equal to 1 even for false alarm rates almost 0. The difference was more
obvious when the code rate was increased to 0.2 in Fig. 13.9. We could see that the performance of A-RPCA
did not change much even for a code rate = 0.2. The difference was clear for the cases of no preprocessing
and RPCA, where the performance declined.

Figure 13.8: Code rate = 0.1, 𝑃𝐷 vs 𝑃𝐹𝐴: (LoS, NLoS) = (6, 1), SNR = 10 dB, 𝑁 = 128.

The miss-detection and false alarm probabilities were evaluated as a function of the hypothesis testing
threshold in Fig. 13.10 where the code rate was, respectively, equal to 0.3. The figure confirmed our
previous results with ROC curves. The equal error rate (EER) that is the point where the false alarm and
miss-detection probability cross is lower for A-RPCA as compared to the case without preprocessing or
RPCA. This confirmed the higher accuracy obtained by A-RPCA preprocessing.
In conclusion, we have developed a framework for PLA that employs a novel A-RPCA preprocessing
algorithm along with a recon- ciliation technique based on polar codes to further enhance the performance of
existing CSI-based PLA schemes. The proposed A-RPCA preprocessing technique was obtained by solving
a TR-PCP optimization problem. Numerical results showed that A-RPCA substantially improved the error
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Figure 13.9: Code rate =0.2, 𝑃𝐷 vs 𝑃𝐹𝐴: (LoS, NLoS) = (6, 1), SNR = 10 dB, 𝑁 = 128.
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probability after reconciliation.

13.5 Integration with the Architecture

We have not proposed any CSI-PLA components for the ROBUST-6G architecture as we did not perform an
analysis of their vulnerability to spoofing and man-in-the-middle (MITM) attacks. However, these techniques
could be easily integrated into the components of other partners, e.g., for RF fingerprinting.
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Chapter 14

Bounds on Information Leakage of Short
Packet Wiretap Codes

This chapter provides a characterization of the available secrecy rates of practical, low complexity and
delay-constrained wiretap code constructions as a function of the codelength and of the quality of security
(QoSec) requirements. Further technical details about this work1 can be found in Appendix E.

14.1 Background and Motivation

Wiretap coding allows to counter passive eavesdropping provided that the legitimate receiver has an SNR
advantage compared to the eavesdropper. In order to select a suitable wiretap coding scheme, it is necessary
to adapt the channel coding rate to the channel conditions. For applications requiring short packets or low
latency, it is not possible to guarantee a vanishing information leakage; for a target leakage constraint 𝛿, the
back-off of the finite-blocklength secrecy rate from the secrecy capacity must be taken into account. In our
preliminary work [57], we have investigated the performance of practical wiretap schemes based on polar
codes for a simplified channel model where the main channel is noiseless and the eavesdropper’s channel
is a binary erasure channel (BEC). Our goal is to extend these results in order to obtain lower bounds on
the achievable secrecy rate 𝑅(𝑛, 𝛿, 𝜖) for a given blocklength 𝑛, leakage 𝛿, and error probability 𝜖 for more
general channels.

14.2 Proposed Methodology

For simplicity, in this project we focus on the case of binary inputs and assume that the wiretap channel
is degraded. Following recent theoretical results on the second-order approximation for the secrecy rate
of wiretap codes [58], we measure the information leakage in terms of the total variation distance (TVD)
between the joint distribution of the confidential message M and the eavesdropper’s observation Z𝑛, and the
ideal distribution where M is uniform and independent of Z𝑛. We consider practical wiretap coding schemes
based on polar codes, which are low-complexity, asymptotically secrecy capacity-achieving, and are already
integrated in modern communication standards such as 5G New Radio.
In our previous work [57], we have shown that the information leakage in TVD for polar codes is upper
bounded by the sum of the TVDs of the bit-channels corresponding to the confidential bits. However, for
general channels, the exact computation of the TVDs of the bit-channels is prohibitively complex since the

1V. Bioglio, L. Luzzi, paper in preparation, to be submitted to ISIT 2026.
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cardinality of the output alphabet grows exponentially. To solve this problem, we use the upgrading merge
algorithm proposed in [59] in order to obtain an upper bound of these TVDs with arbitrary precision.

14.3 Numerical Results and Analysis

Numerical results are presented in Appendix E.3. Our simulations show that although they asymptotically
achieve the secrecy capacity, wiretap schemes based on polar codes incur a significant loss in terms of secrecy
rate in finite blocklength, which depends on the target parameters 𝜖 and 𝛿 and the channel gains, and must
be taken into account for practical implementation. For instance, when the main channel and eavesdropper’s
channel are additive white Gaussian noise (AWGN) channels with Binary Phase Shift Keying (BPSK) inputs
and noise variance 𝜎2

𝑏
= 0.2 and 𝜎2

𝑒 = 2 respectively, at blocklength 𝑛 = 512, polar codes are guaranteed to
achieve approximately 43% of the optimal secrecy rate.
We note that the proposed lower bound on the secrecy rate of polar codes is not tight for general channels; a
tighter bound was derived in our previous work [57], but it seems difficult to evaluate numerically except for
the simple case where the eavesdropper’s channel is a binary erasure channel (BEC) (see Appendix E.3).

14.4 Integration with the Architecture

Our code outputs a lower bound for the achievable secrecy rate with polar codes as a function of the
blocklength 𝑛, the instantaneous SNR and the target information leakage 𝛿 (or, alternatively, it outputs an
upper bound for the information leakage for a given SNR, blocklength and secrecy rate) and can be used in
the Secrecy and Information Leakage component CENS02 to generate secrecy maps.
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Chapter 15

Challenge-Response Authentication At The
Physical Layer

15.1 Analysis of Challenge-Response Authentication With Reconfigurable
Intelligent Surfaces

PLA mechanisms exploit signals exchanged at the physical layer of communication systems to confirm
the sender of a received message. In [60], UNIPD proposes a novel challenge-response PLA (CR-PLA)
mechanism for a cellular system that leverages the reconfigurability property of a RIS (under the control of
the verifier) in an authentication mechanism. In CR-PLA, the verifier BS sets a random RIS configuration,
which remains secret to the intruder, and then checks that the resulting estimated channel is modified
correspondingly. In fact, for a message sent by an attacker in a different location than the legitimate UE,
the BS will estimate a different channel, and the message will be rejected as fake. Such a solution reduces
the communication and computational overhead with respect to higher-layer cryptographic authentication.
We derive the maximum a posteriori probability attack when the attacker observes a correlated channel and
the RIS has many elements, and the attacker transmits to Bob either directly or through the RIS. Using a
generalized likelihood ratio test to test the authenticity at the BS, we derive approximate expressions of the
false alarm and misdetection probabilities when both the BS and the UE have a single antenna each, while
the RIS has a large number of elements. We also evaluate the trade-off between security and communication
performance, since choosing a random RIS configuration reduces the data rate. Moreover, we investigate
the impact of various parameters (e.g., the RIS randomness, the number of RIS elements, and the operating
signal-to-noise ratio) on security and communication performance.

15.1.1 Background and Motivation

Determining if a received message is coming from its claimed sender, i.e., establishing its authenticity, is
a key security problem in communication systems. The current and future networks will include several
interconnected devices with diversified energy and computational constraints, and PLA is an attractive
security solution since it requires simple signal processing capabilities and exploits existing signals without
introducing communication overhead. In tag-based PLA, the channel operates as a tag: the receiver
authenticates newly received messages that appear to have traveled through the same channel as those
(authentic) received in the past. When an attacker transmits from another location, the resulting channel is
different from that of the legitimate transmitter and is detected as fraudulent.
Since PLA is based on channel characteristics, devices that enable the manipulation of propagation properties
should be considered to enhance security. To this end, a RIS is an interesting component, as it includes
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several reflective elements, each introducing a controllable phase shift in the equivalent baseband reflected
signal. RISs have also been considered for PLA to increase the SNR and improve the authentication process.
However, the possibility of reconfiguring RISs also paves the way for a new PLA procedure, called challenge-
response (CR) PLA. In CR-PLA, the receiver first randomly modifies the propagation environment (which
represents the challenge) and then estimates the channel through which the received signal has passed (which
represents the response) to verify that it matches the modified environment. For an attacker that does not
know the current challenge (i.e., the current RIS configuration) it will be harder to perform an effective
authentication attack than in the PLA setting.
While RIS-based CR-PLA is a promising security solution, its performance has not been investigated in
the literature. This study should include not only the security performance – in terms of false alarm (FA)
and misdetection (MD) probabilities – but also communication performance, since the choice of the RIS
configuration has an impact on the achieved data rates. Moreover, the ability to withstand advanced attacks
that exploit the partial channel knowledge of the attacker is still to be investigated. By a thorough analysis of
the RIS-based CR-PLA, it will be possible not only to assess the merits of this security solution but also to
design it properly, i.e., to select the RIS size and the randomness.

15.1.2 Proposed Methodology

To address these issues, in this work, we consider an RIS-supported CR-PLA mechanism for cellular net-
works, where a BS verifies the authenticity of messages received from a UE. The CR-PLA procedure includes
two stages. In a preliminary stage, the UE transmits a sequence of pilot samples (properly authenticated
by a higher-layer procedure) to the BS via the RIS with several configurations, and the BS estimates the
corresponding UE-RIS-BS cascaded channels. This will enable the BS to predict the cascaded channel
under any other RIS configuration. In the second stage, aiming at authenticating a message potentially
coming from the UE, the BS randomly chooses a RIS configuration while a new message is transmitted.
The BS then compares the channel estimated from the received signal with that predicted for the selected
RIS configuration, using the information obtained in the preliminary stage. From this comparison, the BS
decides on the message authenticity.
We consider a GLRT to decide about the authenticity of the message and analyze the performance of the
CR-PLA scheme in terms of both FA and MD probabilities. Note that the random RIS configuration also
affects the data rate of the communication link between the UE and the BS. To limit the rate loss, we restrict
the random selection of each phase shift of the RIS to an angular sector centered around the phase shift that
maximizes the data rate, and we investigate the security performance as a function of the size of the angular
sector. We also derive the maximum a posteriori probability (MAP) attack to be used when the attacker
knows his channel to the legitimate UE, and this channel is partially correlated with that from the legitimate
UE to the RIS. The attacker can transmit the attack signal either directly to the BS or through the RIS. In
the latter case, the attacker signal will also be determined by an instantaneous random RIS configuration.
Approximate expressions for the FA and MD probabilities and the data rate are obtained when both the UE
and the BS are equipped with a single antenna, and the RIS has a large number of elements.

15.1.3 Numerical Results and Analysis

Here we report the main result, for more details please refer to [60].
We examine in detail the effects of the correlation between the Alice-RIS and Eve-RIS channels. Fig. 15.1
shows the analytical mean MD probability as a function of 𝜌 for an FA probability 𝑃FA = 10−3, 𝑁 = 50, and
for values of 𝜌 that either give the minimum MD probability, i.e. 𝛾 = 𝜋 (independent of spectral efficiency),
or give a spectral efficiency loss 𝜂 = 2%, 10%, or 50%. First, we consider the scenario in which Eve transmits
directly to Bob. We also include the performance of the tag-based PLA for comparison. First, we observe
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Figure 15.1: Analytical average MD probability as a function of 𝜌 for FA probability 𝑃FA = 10−3, for values
of 𝛾 providing the minimum MD probability (irrespective of the spectral efficiency), or giving values of
𝜂 = 2%, 10% or 50%, and in the absence of CR PLA mechanism.

that using the CR-PLA mechanism significantly reduces the MD probability compared to the case without
CR. Regarding the behavior as a function of 𝜌, we observe that even for 𝜌 = 0 (uncorrelated channels), the
MD probability is high for the scheme without CR, since choosing the RIS configuration that maximizes the
spectral efficiency makes the resulting channel non-zero mean, and this bias can be exploited by the attacker.
Using the CR approach instead reduces the bias (which becomes zero for 𝛾 = 𝜋) and results in a lower MD
probability. Indeed, for a spectral efficiency loss of only 2%, the MD probability drops to about 10−2 with
𝜌 = 1, and even lower values are obtained for lower 𝜌 or larger 𝜂. Also note that in the absence of CR, the
MD mostly increases for 𝜌 > 0.8, while the increase is smoother with CR PLA.
For the RIS attack, we can see from Fig. 15.1 that the correlation factor has a higher impact on the MD
probability. As observed before, a lower correlation makes the RIS attack less effective than the direct attack,
while at high correlations the direct attack is more effective.

15.2 Divergence-Minimizing Attack Against Challenge-Response Authenti-
cation with IRSs

In [61] UNIPD proposes a new attack against challenge response physical layer authentication (CR-PLA)
with RISs. Drawing from prior work, we establish bounds on performance metrics, such as probabilities of
false alarm and missed detection, using Kullback-Leibler (KL) divergence. Leveraging prior results in [62],
we extend the analysis to the CR-PLA scenario with RIS. We derive the optimal attack strategy to minimize
the divergence between authentic and forged signals when the attacker has either partial or no knowledge of
the legitimate cascade channel. We evaluate the attack performance under different conditions, by varying
the correlation between Eve’s observation and the legitimate cascade channel, or the SNR at the legitimate
receiver.

15.2.1 Background and Motivation

Source authentication is the problem of establishing if a received message truly comes from the declared
sender or has been forged by an impersonating attacker. Risks in accepting unauthenticated messages go
from denial of service to privacy to the loss of control of devices, e.g., in Internet of Things (IoT) contexts.
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Several authentication mechanisms have been explored, beyond those operating at the application level and
using cryptographic approaches. Here we focus on PLA, which leverages the propagation characteristics of
the physical channel as signatures of the transmitting devices or the communication links. The basic approach,
introduced by Simmons [63] includes two phases, the identification acquisition, and the identification
verification. In the former, the receiver Bob (verifier) estimates the channel using signals transmitted by
Alice (the authentic source) that are authenticated at higher layers (e.g., by cryptographic mechanisms). In
the latter, whenever Bob receives a new message, he also estimates the channel over which the signal traveled
and compares this estimate with that obtained in the first phase. If the two estimates are consistent (note that
they are still affected by noise), then the received message is deemed authentic, otherwise it is considered
fake. PLA has been studied for several technologies, including OFDM and MIMO, underwater acoustic
communications [64], and using several techniques for the test, from Neyman-Pearson tests to machine
learning approaches.
Recently, a further evolution of PLA has been introduced by exploiting the controllable nature of wireless
channels provided by new communication technologies. In particular, RISs are controllable devices that can
change the propagation of wireless signals by changing the phase shift introduced by their elements. When the
RIS is under Bob’s control, he can set a random configuration of the RIS which remains secret to the attacker,
and verify that the estimated channel on a received message corresponds to the set configuration, [65].
This approach provides a challenge-response physical layer authentication (CR-PLA) mechanism and can
be applied also when other controllable channels are available (e.g., Bob is a drone that can change its
position, [66]).

15.2.2 Proposed Methodology

We investigate novel attacks to be performed when the CR-PLA uses an RIS to perform the challenge-
response approach. In particular, we leverage the results of [62, Th. 2] that has established bounds on the
performance for a conventional (non-interactive) PLA mechanism, in terms of probabilities of FA and MD.
The bounds exploit the KL divergence of observed channels at Alice, Bob, and Eve, and it turns out that
when the observations in the legitimate case are jointly Gaussian distributed, the optimal attack strategy
is also Gaussian distributed. Here we derive the bounds for the considered CR-PLA scenario with RIS
and, under the assumption of a large number of RIS elements, we ensure that the assumption in [62, Th.
2] are satisfied and derive the optimal attack by Eve. We assess the performance of the obtained attack
by considering different correlations between Eve’s observation and the legitimate cascade channel, and
different SNR values for the legitimate channel.

15.2.3 Numerical Results

We consider correlated legitimate and attack channels, with 𝜌 ∈ [0, 1] representing the correlation factor
(see [61] for more details), and Alice, Bob, and Eve are equipped with 5 antennas each. The channel is
AWGN and Bob’s noise power is 𝜎2

B = 𝑁/10, where 𝑁 is the number of elements of the RIS.
Fig. 15.2 shows the detection error tradeoff (DET) curves for different value of 𝜌. As 𝜌 increases, the DET
curves move towards the edge of the shaded area, which represents the trivial limit case when the decision
is taken randomly, without using the signal. Thus, the FA probability for a given MD probability increases
when the correlation between Eve’s observation and the actual cascade Alice-IRS-Bob channel is higher.
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Figure 15.2: DET curves for the GLRT for different values of 𝜌. The area corresponding to 𝑝MD ≥ 1 − 𝑝FA
is shaded, and its edge represents the trivial limit case in which the decision is made tossing a biased coin.

15.3 Physical-Layer Challenge-Response Authentication with IRS and Single-
Antenna Devices

In [67], UNIPD has focused on a novel challenge-response physical layer authentication (CR-PLA) mecha-
nism for wireless communications. It integrates an RIS under the control of the receiver, which operates as
a verifier for the identity of the transmitter. In CR-PLA, the verifier randomly configures the RIS and then
checks that the resulting estimated channel is correspondingly modified. We address the trade-off between
communication and security performance, in terms of average SNR and MD probability of an impersonation
attack, respectively. In particular, we design the probability distribution of the random RIS configuration that
maximizes the average receiver SNR under an upper bound constraint on the MD and FA probabilities, for
the special case where both the transmitter and the receiver are equipped with a single antenna. Numerical
results demonstrate effective balancing of communication metrics and security requirements, suggesting that
CR-PLA is a promising solution for future secure wireless communication.

15.3.1 Background and Motivation

Establishing whether a received message truly comes from the legitimate sender or has been forged by an
impersonating attacker describes the user authentication problem. If unauthenticated messages are accepted,
several risks might occur that go from denial of service to privacy or the loss of control of devices, e.g., in
Internet of Things (IoT) contexts.
In the literature, several authentication mechanisms have been proposed, mostly operating at the application
layer and using cryptographic approaches. Here, we exploit the propagation characteristics of the physical
channel as a signature of the communication link or the transmitting device, in what is known as PLA.
In [63], the basic approach is introduced: it consists of two phases, i.e., the identification acquisition and the
identification verification phases. In the first phase, the receiver Bob (verifier) estimates the channel from
signals transmitted by Alice (the authentic source). Higher-layer mechanisms, e.g., based on cryptography,
are used to authenticate the signals. In the second phase, whenever Bob receives a new message, he also
estimates the channel over which the transmitted signal has propagated and compares this estimate with that
in the first phase. If the two are consistently similar (considering that they are both affected by noise), the
received message is stated as authentic; otherwise, it is assumed to be fake. Several technologies, including
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OFDM, MIMO, and underwater acoustic communications, employed PLA, using different testing techniques,
from Neyman-Pearson tests to machine learning approaches.
Recently, the controllable nature of wireless channels provided by new communication technologies has been
exploited for further improvement of PLA. Specifically, the propagation of wireless signals can be modified
using RISs, i.e., controllable devices, where the phase shift introduced by each element can be changed.
Indeed, when the verifier controls the RIS, he can set a random configuration of the RIS which remains secret
to the attacker, and verify that the channel estimated from a received message corresponds to the predicted
channel according to the set configuration. Such an approach provides a CR-PLA mechanism, where the
random configuration is the challenge and the predicted channel is the expected response. Such an approach
can also be applied when other controllable channels are available, e.g., when Bob is a drone that changes
its position to pose a challenge.

15.3.2 Proposed Methodology

In this paper, we aim to design the random RIS configuration of the CR-PLA mechanism. We focus on the
simple scenario where both the legitimate transmitter and the verifier are equipped with a single antenna,
and the number of elements in the RIS is large. First, we observe that the random RIS configuration affects
the data rate of the communication link between the UE and BS. In particular, increasing its randomness
yields in general a lower MD probability while also lowering the communication performance. To measure
the communication performance we consider the SNR averaged over the random RIS configuration. Then,
we consider a GLRT at the verifier to make the decision about the authenticity of the message and analyze
the performance of the CR-PLA scheme in terms of both FA and MD probabilities. Lastly, we design
the probability distribution of the randomly selected phase shifts that maximize the average SNR under an
upper bound constraint on the MD probability for a desired FA probability. In particular, we identify two
statistical properties (represented by two real numbers) that capture the effects of the probability density
function (PDF) on both the communication and the security metrics, so that the PDF design problem boils
down to the optimization of these two parameters, under other constraints. In the design, we consider the
worst-case scenario for the defense, by assuming that the attacker has complete channel knowledge, which
is a challenging condition in practice.
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15.3.3 Numerical Results

As an example of the obtained results in [67], we report here the results obtained to find a tradeoff between
the signal-to-noise-ratio (SNR) Ω and the average misdetection probability 𝑃MD. Fig. 15.3 shows the
𝑃MD(𝑚★, 𝑠★𝑅, 𝜏) as a function of Ω(𝑚★). In particular, we consider different values of the false alarm
probability 𝑃FA in the set {10−4, 10−3, 10−2, 10−1}, 𝑁 = 100, and 𝜎2

𝐵
= 0.6. It can be seen as for a desired

𝑃FA, a higher Ω(𝑚★) comes at the expense of a higher 𝑃MD(𝑚★, 𝑠★𝑅, 𝜏). Furthermore, the smaller the desired
𝑃FA is, the smaller the reduction of Ω(𝑚★) in dB would be, if the minimum possible 𝑃MD(𝑚★, 𝑠★𝑅, 𝜏) is
assured. However, the smaller the 𝑃FA is, the smaller the minimum 𝑃MD(𝑚★, 𝑠★𝑅, 𝜏) that can be ensured.

15.4 Energy-Based Optimization of Physical-Layer Challenge-Response Au-
thentication with Drones

Drones are expected to be used for many tasks in the future, requiring protocols to ensure that they operate in
a secure state. In [68], UNIPD proposes a novel PLA-based CR protocol in which a drone Bob authenticates
the sender Alice with the presence of a malicious agent Eve by exploiting his prior knowledge of the wireless
channel statistic (fading, path loss, and shadowing). In particular, Bob will move to a set of positions on the
map, and by estimating the attenuations of the received signals he will authenticate the sender. Considering
the energy consumption in the design, we provide three solutions of our protocol that differ in performance
and computational complexity: we propose a purely greedy solution (PG), an optimal Bellman iterative
solution (BI), and a heuristic solution based on the evaluation of the standard deviation (STD) on the map.
Finally, we demonstrate the effectiveness of our approach through numerical simulations.

15.4.1 Background and Motivation

Today, drones are being used for various tasks such as precision agriculture and disaster management.
Moreover, the integration of drones in machine-to-machine communication is helpful in a variety of contexts,
such as the Internet-of-Drones (IoD) and non-terrestrial networks (NTN). However, these capabilities also
make drones possible targets of attacks, including, for instance, spoofing to disrupt the drone’s navigation
system, and jamming as a denial of service.
We address the problem of drone authentication, where a drone, Bob, communicates with a transmitter, e.g.,
on the ground, which we call Alice, while a third-party agent, Eve, aims to impersonate Alice and send fake
malicious messages to Bob, e.g., to convince him to land in a certain area. The goal of Bob is to verify the
authenticity of the sender and distinguish Alice from Eve.
A classical authentication strategy is the (cryptography-based) CR protocol, which is based on a secret key
shared between Alice and Bob. In this protocol, the verifier sends a request, called a challenge, which only a
legitimate user with a valid key can correctly answer. Here, we consider PLA-based CR solutions. The key
component of CR-PLA is the availability of a partially controllable channel: the verifier Bob authenticates
Alice by manipulating the channel and verifying that the received signal is consistent with the expected
change. The change induced by Bob corresponds to the challenge of crypto-based CR. On the other hand,
since the change in the channel is decided on the fly by the verifier, it is difficult for the adversary to predict
Bob’s manipulations and guess the expected channel.

15.4.2 Proposed Methodology

We propose a CR-PLA protocol for drone authentication, where the controllable parameter used as the
challenge is the drone’s position since moving the drone implies changing the path loss of the wireless link.
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Even a sophisticated Eve (which can freely tune its transmission power and pre-compensate the Eve-Bob
channel) that does not know the current drone’s position has high uncertainty on how to manipulate the
channel, thus the authentication procedure is secure. This means that the attacker’s probability of success
depends on the variability of shadowing over space since an attenuation that does not vary with Bob’s
position can be easily guessed by the attacker. Thus, we use the shadowing effect as a source of randomness.
In particular, Bob checks whether the received response matches the distribution of attenuation due to
shadowing given his position. Moreover, since more positions can be associated with the same path loss
and shadowing (i.e., the challenge), we also propose an energy-saving CR-PLA strategy that minimizes the
long-term energy expended by Bob without sacrificing the security of the protocol.
In [66], the authors proposed a CR-PLA protocol for drone communication. However, the channel was only
partially modeled (e.g., no shadowing was considered), and the problem of energy minimization was not
addressed.
We consider the scenario of Fig. 15.4, where a drone (agent Bob), is communicating with a ground device
(agent Alice) while moving on a gridded region of pointsX = {𝒙1, . . . , 𝒙𝑁 }, where 𝒙𝑖 is the coordinate vector
of position 𝑖. The drone receives several messages from the ground device, including those for navigation
and the instructions required by the mission (e.g., taking pictures). We aim to provide an authentication
mechanism to ensure that the drone processes only messages coming from the ground device, rather than
from an attacker impersonating the ground device. In turn, an attacking agent, Eve, aims to impersonate
Alice by sending messages to Bob purposely designed to be confused with those of Alice. Such messages
aim for example to detour the drone from its designed route.
Transmissions are narrowband and model the channel gains are obtained as the result of (free space)
path-loss, shadowing, and fading phenomena, which properly capture the main components of wireless
propagation. Note that, as we are considering shadowing and path-loss as authentication features, our
solution is independent of the number of used antennas and devices.
For CR-PLA, as described in the following, Bob needs to estimate the channel over which the receiver
message went through. Several well-known strategies can be used for such a task, e.g., via least squares
estimation. The complex gain of the baseband equivalent channels Alice-Bob and between Eve-Bob are
denoted as ℎ and 𝑔, respectively. However, Bob does not know whether the estimated channel 𝛾 he has just
obtained, is ℎ or 𝑔. From the estimate 𝛾, Bob computes the attenuation 𝑎, and that includes the free space
path-loss (modeled by the Friis formula), shadowing, and fading. We also assume the transmit power of
Alice and antenna gains of the legitimate agents are publicly known.
Shadowing includes the effects of obstacles placed between the transmitter and receiver. The shadowing term
depends on the location of the transmitter and the receiver, and channel gains of couples of transceivers in
proximity have a high correlation. To model such a phenomenon, we resort to the well-known Gudmundson
[69] model of the correlation of the shadowing components for two receivers at a given distance. Fading
accounts for shorter channel variations and is affected by Doppler spread and multipath. As it is hardly

Bob

Alice Eve

Tx
request

Response
Attack

Challenge

Figure 15.4: Example of CR protocol.
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predictable, it cannot be exploited for our authentication scheme. Shadowing instead is shown to have a
higher coherence distance. Moreover, it varies only slowly over time (i.e., slow fading). Thus, we will exploit
the shadowing for the CR protocol while considering fading as estimation noise.
Concerning the attacker, we assume Eve can alter her transmission power to match any desired channel. On
the other hand, we assume the drone position to be secret until signal reception, i.e., the attacker does not
know Bob’s position while designing the spoofing signal.
Since the protocol requires the drone to move, we model the energy required to move following the results
in [70].

15.4.3 Numerical Results and Analysis

We modeled a scenario where a drone moves around a plane area of size 50 m × 50 m, at a height of 20 m
from the center of the plane area where Alice is. We consider the drone to be always in LoS, and the free
space path loss is modeled via the Friis formula. The area is sampled using a step size of 𝐴 = 1 m along
both directions, ending up with a total of 𝑁 = 2500 sampled positions. The considered carrier frequency is
𝑓0 = 1.8 GHz. The shadowing has been simulated considering coherence distance 𝐷coh = 10𝜆 with standard
deviation 𝜎𝜉 = 6 dB.
First, we assess the security performance of the protocol. We set the noise variance to 𝜎𝑤 = 0.02, 0.05, 0.1,
and 0.2 dB , |R | = 10 dB, and, for each 𝜎𝑤 , we run 10, 000 simulations for legitimate and under attack case.
Fig. 15.5 compares the DET curves obtained for different values of 𝜎𝑤 considering both simulation and the
analytical derivation (B.13). We confirm the validity of our model, as the analytical model and simulation
results almost perfectly match. As expected, when 𝜎𝑤 increases, it becomes harder for the defender to
distinguish legitimate from attacker transmission, thus the 𝑝md increases.
Next, we evaluate the results of the energy minimization policies. Concerning the parameters of such
solutions, for the BI we fixed the discount factor 𝛾 = 0.95; for the STD-based solution, we consider instead
windows𝑊 (𝒙) of size 𝐿 = 5, normalization factor 𝛼 = 100, and decaying factor parameter 𝛽 = 20.
Fig. 15.6 shows the statistics of the energy spent by the drone, computed over 1000 simulation runs, after
random initialization, obtained using the PG, the BI, and the STD-based approach. As it can be seen from the
magnification, on the first movements the greedy policy requires on average (slightly) less energy. However,
after just a few steps, both BI, and the STD-based solutions start to outperform the PG solution, with a gap
that increases over time. As expected, the best performance is achieved by the BI. Still, the gap between
the optimal BI and the STD-based approach is limited. Thus, in scenarios where the Markov decision
process (MDP)-based solution is not computationally feasible, it is reasonable to resort to the heuristic STD
approach.

15.5 Challenge-Response to Authenticate Drone Communications: A Game
Theoretic Approach

As drones are increasingly used in various civilian applications, the security of drone communications is
a growing concern. In this context, in [71] we present strategies for CR-PLA of drone messages. The
ground receiver (verifier) requests the drone to move to a defined position (challenge), and authenticity is
verified by checking whether the corresponding measured channel gain (response) matches the expected
statistic. In particular, the challenge is derived from a mixed strategy obtained by solving a zero-sum game
against the intruder, which in turn decides its own positions. In addition, we derive the optimal strategy for
multi-round authentication, where the CR-PLA procedure is iterated over several rounds. We also consider
the energy minimization problem, where legitimate users want to minimize the energy consumption without
compromising the security performance of the protocol. The performance of the proposed scheme is tested
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Figure 15.5: DET curves of the proposed authentication procedure for different 𝜎𝑤 values. Analytical
(continuous) vs simulated (circles mark, dashed).

Figure 15.6: Energy spent over time, using the PG (blue), the BI (red), and the STD-based approach (green).
Average (continuous line) plus/minus standard deviation (shaded area), computed over 1000 simulations.
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in terms of both security and energy consumption through numerical simulations, considering different
protocol parameters, different scenarios (urban and rural), different drone altitudes, and also in the context
of drone swarms.

15.5.1 Background and Motivation

The use of drones has rapidly increased over the last few years. Starting as a military tool, they are now used
in many civil applications such as precision agriculture, environmental monitoring, and disaster management
and relief. As drones become integrated into more complex systems, security is a rising concern. Among
the major threats, the transmission of jamming or spoofing signals is particularly dangerous as these can
disrupt the navigation system and jeopardize the drone’s mission.
This contribution addresses the problem of authenticating messages transmitted by drones. In particular, a
drone or ground device (Bob) wants to authenticate messages potentially transmitted by a legitimate drone
(Alice) and distinguish them from those transmitted by an intruder drone (Trudy) attempting to impersonate
Alice. Cryptography-based authentication solutions have several drawbacks: a) they are typically computa-
tionally expensive, b) they often provide only computational security, which may be vulnerable to quantum
computing-based algorithms, and c) they introduce significant communication overhead. Both communica-
tion overhead and computational complexity lead to high energy consumption, which is a limited resource
for drones. Therefore, in this work, we focus on PLA mechanisms that provide security by exploiting the
statistical properties of the channels. These techniques typically consume less energy than their crypto-based
counterparts while providing information-theoretic security.
PLA has recently been studied, and mechanisms specifically targeting drone communication may rely on
fingerprinting or on channel characteristics, eventually supported by a federated learning architecture. Here
we focus on a recent evolution of PLA using a CR approach. In cryptographic CR authentication, Alice
and Bob share a secret key. Then, Bob sends a message called a challenge over a public channel, and Alice
computes and sends back to Bob a response obtained using a hash function of both the secret key and the
challenge. Finally, Bob verifies the authenticity of the sender of the response by comparing the response to a
local response obtained using the same secret key and challenge. Instead of relying on crypto-based solutions,
we consider CR-PLA. CR-PLA is based on partially controllable channels, where the challenge is issued
by the verifier Bob by manipulating the propagation environment, while the response is the received signal
from Alice, which must be consistent with the expected change. Since the challenge, i.e., the propagation
conditions, is randomly chosen by the verifier, it is difficult for Trudy to predict it and transmit a signal that
is consistent with it.

15.5.2 Proposed Methodology

In this paper, we propose novel strategies for Bob and Trudy when using CR-PLA in drone communication.
In particular, in a preliminary phase, Bob measures the channel gain when Alice is at a set of predefined
positions. Then, the authenticated transmission protocol requires that Bob first randomly select a set of
positions (with a suitable distribution) and secretly communicate them to Alice. Alice goes to the indicated
positions and, for each of them, she transmits a pilot signal together with the message to be authenticated.
Next, Bob assesses the authenticity of the received signal by checking that the measured channel gains
correspond to the expected ones, estimated during the preliminary phase. In this context, the challenge is
represented by the set of positions, and the corresponding response is the set of channel gains estimated by
Bob. In turn, for her attack, Trudy randomly selects (with a suitable distribution) a set of positions from
which to transmit the pilot signal and her message. The distributions used by Bob and Trudy to select the
position sets are optimized to their advantage by finding the Nash equilibria (NEs) of a zero-sum game. In
addition, we also consider the problem of minimizing the energy of Alice’s movements by proposing both
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optimal and heuristic strategies to minimize the (average) distance traveled by Alice without sacrificing the
security of the protocol.
The contributions are as follows

• We model the channel between the drone and the receiver, including both the preliminary channel
estimation phase and the security protocol.

• We design the statistical distribution of positions generated by Bob and Trudy by modeling the problem
as a zero-sum game between legitimate users and Trudy, where the payoff is the MD probability for a
target FA probability.

• We consider both optimal and low-complexity solutions for optimizing Bob’s position selection statis-
tics.

• We test the proposed technique by numerical simulation, based on a realistic model of both Alice-Bob
and Trudy-Bob channels, including shadowing effects in urban and rural scenarios.

15.5.3 Numerical Results and Analysis

We now investigate the effects of several parameters of the proposed technique on its performance.

Shadowing variance 𝜎(𝑠)dB First, Fig. 15.8 compares the security performance in environments charac-
terized by different shadowing variances. The figure shows the DET curves, for 𝑁 = 1, 𝜎(𝑠)dB = 6, 10, 13,
and 16 dB. Lines are obtained with the closed-form formulas of the probability, while black markers show
the results obtained with Monte Carlo simulations. We note a perfect agreement between the analytical
and numerical results. When comparing the different variances of the shadowing, we note that the MD
probability decreases with 𝜎(𝑠)dB (for a fixed FA probability). This is because a high 𝜎(𝑠)dB value increases
the map diversity, i.e., positions at the same distance from the receiver have different gains, thus it is harder
for Trudy to guess a position leading to the same gain as Alice to fool Bob.

Number of Pilot Symbols for Channel Estimation 𝐾 About the impact of the number of pilot symbols
used for channel estimation in the authentication phase of CR-PLA, Fig. 15.7 shows the DET curves of the
proposed solution for 𝑁 = 1 round and 𝐾 = 50, 70, and 100 pilot symbols. We see that a higher 𝐾 yields
better channel estimates and thus lower MD probabilities. However, the benefits are limited, indicating that
it may be possible to achieve a good security performance even with low 𝐾 values, thus potentially saving
drone energy and time.

Number of Rounds 𝑁 We now consider the impact of the number of rounds 𝑁 on the security performance.
Fig. 15.9 shows the MD probability as a function of rounds 𝑁 for FA probabilities 10−2, 10−3, and 10−4.
From the results, we see that the MD decreases exponentially with the number of rounds; thus, we can easily
reduce the MD probability to desired values by adding a few more rounds (at the cost of increased consumed
energy).

15.6 Integration with the Architecture

This Chapter has delivered a comprehensive examination of attacks targeting Physical Layer Authentication
(PLA) mechanisms in a 6G network that leverages Reconfigurable Intelligent Surfaces (RIS), as well as the
corresponding mitigation strategies. RIS technology is pivotal for both current and upcoming communication
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Figure 15.7: DET curves for different numbers of pilot symbols in the authentication phase, 𝐾 .
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systems, enhancing coverage and connectivity. In this work, we also explore using RIS to bolster PLA through
an innovative challenge-response scheme. The resulting authentication protocols belong to the PHY-Attack
Identification block, which scrutinizes the received signal to verify the legitimacy of each message. Portions
of these solutions will be incorporated into CUPD04 as an advanced authentication option, surpassing the
capabilities of conventional PLA.
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Chapter 16

Secret Key Generation On Aerial Rician
Fading Channels Against A Curious
Receiver

Secret key generation at the physical layer is expected to be a fundamental enabler for next-generation
networks. In [72], UNIPD considers a network where the user equipment is a drone and proposes a novel
secret key generation solution when the eavesdropper is another node belonging to the network (curious
device). We exploit drone mobility over realistic Rician fading channels. In our protocol, after a prior
training phase, drone Alice chooses a trajectory of positions in space and transmits a message to Bob, on
the ground, from each position. From the received messages, Bob estimates the channel gain from which
a secret key is extracted. The choice of the positions is made to maximize a lower bound on the secret key
capacity. Numerical simulations are used to prove the effectiveness of the proposed approach.

16.1 Background and Motivation

SKG at the physical layer is a mechanism that enables two devices to agree (or refresh) a stream of bits (key)
that remains secret to other eavesdropping devices. Such a key can then be used to support cryptographic
techniques, e.g., to achieve confidential transmissions, and provide authentication mechanisms. Two main
approaches are available for SKG at the physical layer: the source-based SKG, where the randomness to
generate the key is provided by the channel over which communication occurs; the channel-based SKG where
instead one of the two parties transmits a random key that is kept secret from the eavesdropper as its channel
does not allow to infer the key properly (e.g., the attacker channel is more noisy than the legitimate one).
Here, we focus on the channel-model technique.
Conventional source-model SKG mechanisms at the physical layer typically exploit two characteristics of the
wireless channel: reciprocity and fading. Usually, the former is guaranteed by both the reciprocity theory for
antennas/electromagnetic propagation and the synchronization of the devices whose communication must
occur within the coherence time of the channel. The latter, on the other hand, is often guaranteed by random
reflections of the signal in the environment.
However, with poor scattering and/or slow fading, typical for example of unmanned-aerial-device (UAV)
applications, SKG is challenging, as the LoS component might be dominant, thus the channel can be, in
the worst case, deterministic. Few recent studies tackle SKG in UAV contexts; in particular, they exploit
MIMO and three-dimensional (3D) spatial angles to extract keys in LoS environments or inject randomness
into the transmitter, thus creating an artificial frequency-selective fading channel. Still in the context of
single-antenna devices, these approaches cannot be applied as the angle of arrival cannot be estimated.
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Figure 16.1: SKC vs the number of quantization levels 𝑄 (in log scale), with different map sampling spaces.

16.2 Proposed Methodology

In this paper, we consider a realistic Rician fading channel for UAV transmissions and propose a novel
solution that exploits the mobility of the UAVs to perform SKG at the physical layer, allowing a robust yet
effective key agreement in low-scattering environments in the presence of a curious device. In particular,
the eavesdropping device Eve belongs to the same network and has a fixed position on the ground, known to
the other devices. In detail, our protocol starts with drone Alice moving in space to gather information on
the environment, more precisely, on the channel gain in a pre-defined grid of possible positions. In the next
phase, Alice chooses a trajectory of positions, moves there, and transmits a message to Bob, on the ground,
which will estimate the channel gain and then quantize it to a fixed number of levels 𝑄. The choice of the
positions is made to maximize the secret-key capacity (SKC).

16.3 Numerical Results and Analysis

16.3.1 Map Geometry and Number of Quantization Levels

We see from Fig. 16.1 that by increasing the number of quantization levels 𝑄, the secret key capacity first
increases and then saturates. This justifies our design decision to quantize the estimated gains at Bob and
work with discrete levels. The same is true for the number of map positions 𝑀: a higher number of points
on the map improves the performance, yet oversampling the space would result in sampling the same gains,
leading to a saturation of the key entropy at Bob.

16.3.2 Shadowing Variance and Eve-Bob Distance

Fig. 16.2 shows that higher shadowing STD at Bob leads to higher capacity; this is because, given a
trajectory, the resulting gains at Bob have higher entropy. Finally, the proximity of Eve to Bob worsens the
performance because all the trajectories lead to similar gains to Bob: if Eve were exactly in Bob’s position,
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Figure 16.2: SKC as a function of the number of pilot symbols𝐾 , with different Alice-Bob channel shadowing
STD 𝜎sh,A and Eve-Bob distance 𝑑.

all the trajectories would lead to the same gain also to Bob, and the mutual information between him and
Alice would be zero as well.

16.4 Integration with the Architecture

We introduce an innovative approach for generating secret keys by employing drones and leveraging the
fading properties of the wireless channel. This solution belongs to the PHY Components block of the
ROBUST-6G architecture, as it defines actuation mechanisms whereby drones alter their trajectories to
facilitate key-generation processes. The method will be integrated into a forthcoming second version of the
CUPD04 component.
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Chapter 17

Adversarial Attacks on ISAC Systems

ISAC is expected to be a key enabler for next-generation networks, posing unprecedented security issues. In
this paper, we evaluate the security of ISAC systems under adversarial ML attacks. In particular, at UNIPD,
we have studied a scenario where Alice and Bob cooperate to perform bistatic sensing of the environment. As
the scatterers are located in different regions, Alice and Bob can obtain a coarse estimation of the scatterers’
locations by classifying to which area the received signal belongs. On the other hand, the attacker Trudy aims
at disrupting such a procedure by properly designing her transmitting beamformer to fool Bob, and make
him estimate a target region. We evaluate the effectiveness of the proposed attack via numerical simulations.

17.1 Background and Motivation

ISAC systems emerge as a cornerstone technology for the sixth-generation era, seamlessly incorporating
sensing functionality into wireless networks as a native capability. The object’s localization capabilities of
such a technology are of crucial interest, as the ability to monitor physical factors is crucial for optimizing
the network’s performance, enhancing security, driving automation, and carrying out other vital tasks. Still,
this technology poses unprecedented security and privacy issues. In the literature, spoofing attacks are of
particular interest, as the attacker can perform beamforming and disrupt the sensing phase of ISAC systems,
and often ML strategies are adopted for tackling such issues.

17.2 Proposed Methodology

In this contribution, whose extended version is in Appendix D, we have Alice and Bob cooperating to perform
bistatic sensing of the environment, while Trudy aims at disrupting such a procedure by properly designing
her transmitting beamformer to fool Bob. In particular, the contributions are as follows:

• We model a realistic ISAC channel, using a geometrical channel model that takes into consideration
the scatterer’s location.

• We train a standard CNN to classify the received signal into the area where the scatterers are located.

• We design a projected gradient descent (PGD) attack that Trudy can perform to induce her desired
classification area, taking into account the required transmitting power.

• We numerically evaluate the attack, demonstrating its effectiveness
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Figure 17.1: Attack Success Rate as a function of the transmitted power, for different numbers of scatterers
𝐿.

17.3 Numerical Results

The scenario we simulated has 𝑁 = 5 squared areas with size 𝑆 = 30 m. We used a number of antennas of
𝑁𝑇 = 𝑁𝑅 = 4, a maximum transmitter power by Trudy of 𝑃max = 40 dB. The target area for Trudy is the
region 𝑎̃𝑛 = 2, when the true region is 𝑎𝑛 = 1.

17.3.1 Attack Success Rate VS Number of Scatterers

We see from Fig. 17.1 that by increasing the transmitted power 𝑃T, Trudy can perform more effective attacks,
reaching an attack success rate, i.e., an accuracy on the target class, of ≥ 80% when the number of scatterers
𝐿 ≥ 4. We also notice that the performance is extremely dependent on the number of scatterers 𝐿: in fact,
the greater 𝐿, the easier it is for Trudy to find a beamforming matrix 𝑾 to fool Bob. This effect relies on the
rank of the cascaded channel 𝒁 (𝑚) : in fact if 𝐿 ≥ 𝑁𝑅, 𝑁𝑇 then 𝒁 (𝑚) becomes invertible, thus it easier for the
attacker to find the optimal beamformer. This effect is particularly evident with 𝐿 = 2: in that case 𝒁 (𝑚) has
at most two non-zero eigenvalues, thus the optimal beamformer saturates at 𝑃max = 40 dB. Note also that in
that case, multiple solutions are available to the attacker: for each maximum perturbation 𝜖 in, the attacker
can find the beamformer that respects the power constraint. Another solution would be to modify the PGD
algorithm by directly taking into account the power constraint into the solution 𝒁̃, and this is left for future
works.

17.3.2 Attack Success Rate VS SNR

In Fig. 17.2, we observe that as the SNR increases, the required power for Trudy decreases, yet the results
remain very similar. This effect can be justified by the fact that when the channels in input to the PGD are
less noisy, it is easier for the algorithm to find suitable channels to fool Bob’s model.

Dissemination level: Public Page 114/228



Deliverable D5.2

32 33 34 35 36 37 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Transmitted Power [dB]

A
tta

ck
Su

cc
es

sR
at

e
[%

]

SNR=5 [dB]
SNR=10 [dB]
SNR=15 [dB]

Figure 17.2: Attack Success Rate as a function of the transmitted power, for different numbers SNR levels.

17.4 Integration with the Architecture

This contribution fits with the Trustworthiness Evaluation part of the architecture, as it poses serious
benchmark attacks based on adversarial ML to evaluate the robustness of ISAC algorithms.
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Chapter 18

Impact of Residual Hardware Impairments
on RIS-Aided Authentication

In this study [73], EBY examines how residual RHI influences PLA in RIS-aided communication systems
in the presence of spoofing attacks. RIS technology, widely studied for 6G networks, enhances channel
manipulation and provides additional spatial diversity; however, its interaction with hardware impairments
in PLA mechanisms remains insufficiently explored. This study addresses this gap by analyzing how RHI at
both transmitter and receiver nodes affect authentication performance when RIS is used to support legitimate
users and suppress attacker signals.

18.1 Background and Motivation

PLA works by checking the stability of channel observations and how they change over time. Since the
wireless channel carries unique patterns that are difficult for an attacker to copy, PLA compares consecutive
CSI values to decide if the transmitter is legitimate or not. Because of this, the temporal behavior of the
channel is very important for reliable authentication. RISs bring a new dimension to this idea. By controlling
reflections in the environment, a RIS can change the propagation conditions and create extra diversity in the
channel. In theory, this additional diversity can help PLA, because it makes the channel more distinctive
and harder for a spoofing device to imitate. Therefore, using RIS together with PLA looks promising for
improving system-level security. But in practical systems, the hardware is not ideal. Real devices include
different imperfections that directly affect the received signal. When a RIS is added, these imperfections
interact with both the natural channel and the RIS-generated paths, creating a compound channel with more
complicated behavior. Although many studies focus on RIS-aided communication performance, the effect of
hardware imperfections on RIS-based authentication has not been examined in detail. Because of this gap,
it is not clear if the expected benefits of a RIS remain valid when the devices and reflections are influenced
by non-ideal hardware.
For this reason, the study focuses on understanding how hardware impairments influence PLA when a RIS
is part of the system. The goal is to quantify the impact on authentication reliability and to see if the
extra diversity created by a RIS still improves detection performance in spoofing scenarios. This helps us
understand the practical behavior of RIS-assisted PLA in realistic deployments and whether it can be trusted
as a security enhancement in future systems.
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18.2 Proposed Methodology

The aim of this study is to examine how RHI affects the performance of PLA in a RIS-aided communication
scenario and to understand whether the additional channel diversity created by the RIS can still support
reliable authentication under realistic hardware conditions. The study also aims to quantify how different
RIS sizes, SNR values, and impairment levels influence the false alarm and miss detection behavior of the
system. To achieve this aim, the proposed methodology constructs a detailed system model that includes a
legitimate transmitter, an attacker, a receiver, and a RIS with adjustable phase elements. Since the direct
path is blocked, both legitimate and malicious signals reach the receiver only through RIS reflections. The
compound channel is modeled by considering fading, RIS phase adjustments, transmitter and receiver RHI,
and noise. This provides a realistic basis for analyzing the impact of hardware non-idealities on PLA.
The methodology then applies a likelihood ratio test at the receiver, comparing the current estimated channel
with the previous estimate. This exploits the autoregressive temporal stability of the legitimate RIS-aided
channel, allowing the receiver to identify abnormal variations caused by spoofing attempts. Analytical
expressions for the false alarm probability are derived, while the miss detection probability is evaluated
numerically due to its non-tractable form. Finally, extensive simulations are performed for different RIS
sizes, SNR conditions, and RHI levels to validate the analytical findings and to reveal how each parameter
contributes to authentication performance. Through this methodology, the study aims to provide clear insights
regarding when RIS improves PLA, when RHI becomes a limiting factor, and how system parameters should
be selected for robust authentication.

18.3 Results

The numerical results clearly show that RIS assistance provides strong gains for PLA. As illustrated in Figure
18.1, increasing the number of reflecting elements leads to a noticeable reduction in the miss detection rate.
For example, when the RIS has 32 elements, the miss detection rate decreases by more than 50 percent
compared to a 4-element RIS at a fixed false alarm rate of 0.3. This shows that larger RIS surfaces create
richer channel diversity, which improves the reliability of the decision mechanism.
The results also demonstrate that channel quality plays a major role in authentication performance. When
SNR increases from -20 dB to -5 dB, the false alarm rate drops from 0.69 to 0.25 for a miss detection rate
of 0.3, meaning that better channel conditions support more stable and reliable authentication. Impairment
differences between Alice and Eve further contribute to distinguishing attackers. For instance, when Eve has
impairment variance 2 while Alice has 0.25, the miss detection rate improves from 0.42 to 0.30 at a false
alarm rate of 0.5.
Additionally, intelligent RIS operation yields a clear advantage. At a false alarm rate of 0.2, the miss
detection rate drops from 0.5 under blind RIS operation to 0.33 with intelligent phase control. In contrast,
systems without RIS assistance perform significantly worse, with miss detection levels more than double
those of RIS-aided operation under identical SNR and impairment settings. These results confirm that RIS
substantially strengthens authentication performance, and that impairment asymmetry provides additional
discriminatory value against spoofing attempts.

Contribution to 6G Physical-Layer Security

The findings of this study directly contribute to emerging 6G PLS frameworks by demonstrating how
RIS can be used not only for communication enhancement but also as an active authentication element
that amplifies physical layer uniqueness. By analyzing hardware-impairment–driven channel variations
and exploiting temporal CSI consistency, the proposed PLA mechanism enables secure and lightweight
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Figure 18.1: MDR vs. FAR analysis showing the impacts of different number of RIS reflecting elements
where 𝛼 = 0.9, SNR = 0 dB, 𝜅𝐴 = 𝜅𝐵 = 0.1 and 𝜅𝐸 = 0.4.

authentication suitable for dense 6G IoT deployments. The demonstrated benefits of RIS, such as channel
enrichment, improved discriminability, and robustness under varying RHI and SNR, align with 6G goals for
endogenous security, zero-trust radio access, and real-time RIS-assisted physical layer threat detection. As
6G systems increasingly rely on RIS-enabled environments, the presented methodology offers a scalable and
mathematically grounded approach for attacker detection and physical-layer integrity assurance.

18.4 Integration with the Architecture

This study is directly relevant to authentication and identification of legitimate devices (CEBY05) because it
shows how RHI together with RIS-induced channel diversity creates distinctive physical-layer patterns that
separate genuine transmitters from spoofers. The legitimate Alice–Bob link follows a stable autoregressive
behavior, while Eve’s channel varies unpredictably, allowing identity verification through consecutive CSI
measurements. The results demonstrate that RIS strengthens this contrast and reduces miss detection and
false alarms. Since device impairments create unique distortions that cannot be perfectly copied, especially
after RIS reflections, the method becomes a reliable way to detect impersonation and confirm that the received
signal comes from the legitimate user.
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Part III

T5.3 - Trustworthiness of 6G PHY and
Enabling Trust Building

in 6G Autonomous Agents
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Chapter 19

6G PHY Trustworthiness

19.1 Background and Motivation

In this chapter, we synthesized five contributions from ENSEA and CYU [12–16] on the role of the
physical layer in 6G trust and trustworthiness. Across all works, we observed a common thread: future
cyber–physical systems (CPS) and multi-agent networks will require objective, quantifiable measures of
trust, deeply embedded in the wireless substrate itself. We made the case that joint AoA and ToF sensing
emerge as crucial primitives that enhance trust, integrity, and accountability of autonomous devices.
In [12], we presented a panoramic view of the threats and opportunities emerging in 6G networks of cyber-
physical system (CPS). We highlighted that future networks will not merely carry data; instead, they will
mediate complex multi-agent tasks enabled by sensing and distributed computing, where malicious actors
could disrupt functionality beyond classical attacks such as denial of service (DoS), eavesdropping, or link
dropping. A key insight from this extensive review was the call for more quantifiable measures of trust that
go beyond binary authentication and classical reputation models. We argued that trustworthy multi-agent
systems would require a multi-dimensional trust quantification pipeline, grounded in sensing and physical
measurements, and accounting jointly for cyber as well as physical behaviors.
In this sense, the traditional decoupling between application and communication layers was argued to be no
longer viable for evaluating trust in CPS. Future 6G systems should instead support a tight interaction between
the physical world and the decision-making processes acting upon it. We emphasized that the “physicality”
of 6G networks—sensing, perception, and channel engineering—provided unique opportunities for trust:
wireless channels inherently encoded physical constraints on mobility, geometry, and propagation. Certain of
these physical features have been shown to be unforgeable, as discussed in Chapter 3, making physical-layer
trust anchors essential for 6G CPS. Physical signals thus serve as first-hand witnesses of agent behavior.
These concepts tie directly to the trust architectures we proposed in [13], in which different lower and upper
layer data fusion models were discussed, along with a toy PoC demonstration on how positioning can allow
identifying mis-information attacks in VANETs.
Based on the above, we made the case that AoA and ToF could enable trust via continuous physical integrity
checks, anomaly detection through physical motion consistency, and authenticated locations. The next
key question that needed addressing was the achievable accuracy of AoA and ToF estimation. In [14] we
evaluated the accuracy in joint AoA and ToF based authentication on a real dataset, while in [15], aspects
of sensing accuracy enhancement were revisited. Furthermore, in [16] we exemplified how physical context
awareness could be incorporated in resource allocation for future, trustworthy networks, starting with the
current fifth generation.
In [74], we proposed a joint optimization of privacy-preserving and resource allocation in location based
services through differential privacy and mixed-integer linear programming (MILP) formulation techniques.
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19.2 Physicality, Trust Anchors, and the Need for New Trust Models

19.2.1 Proposed Methodology

In [12], we provided a holistic view of how trust can be built in future networks by leveraging the physical
layer and contextual information. Context was shown to serve as a base for autonomous controls and CPS
that react accordingly to their physical and cyber realities, and, is conceived as a construct that goes beyond
the pure description of the environment in terms of where, when, what and who (known as the four Ws).
Therefore, context-awareness was closely related to situational awareness and could be distilled jointly from
physical and cyber sources, i.e., from radio frequency (RF) inputs, hardware, and sensors, as well as network
attributes.
Furthermore, as 6G is dubbed as the first AI-native1 wireless generation, it was only natural to invest in AI
to interpret semantics and context in future systems. Incorporating context awareness in trust building could
allow handling more efficiently aspects related to identifying risk or threat level and required security level,
particularly for applications such as autonomous driving, robots, e-Health, etc.
Albeit, we also identified that the vision of incorporating the enabling technologies of sensing, positioning
and channel engineering to derive trust was not free of its own set of challenges. For example, in sensing,
we showed that there exist key questions of privacy and reliability. Nevertheless, the ability to infer context
from the sensing, computing, and the channel engineering capabilities expected from future generations
of wireless technologies, were deemed to be valuable for paving the way to trust-centered cyberphysical
systems. Context could be used to better assess, and perhaps quantify, the legitimacy (i.e., trustworthiness)
of a link or of a user (agent), e.g., using AoA to identify abnormal physical behavior, see Fig. 19.1 on the
potential use of AoA-fingerprints to identify Sybil attacks.
Furthermore, context was identified as an enabler for the deployment of PLS security controls in 6G, as
demonstrated in Fig. 19.2. We made the case that PLS controls could not be deployed without having
first ensured the physical context is favorable, or made favorable through feedback control and channel
engineering. These operations were captured in the monitoring stage and in the PHY feedback loop of the
proposed PLS closed loop in the ROBUST-6G architecture, and was conceptually depicted in Fig. 19.2.

19.2.2 Numerical Results and Analysis

In Fig. 19.1 the potential use of RF fingerprints was demonstrated to identify Sybil attacks. The separation
between fingerprints from legitimate vs virtual Sybil agents was established. This distinction was captured
quantitatively as a stochastic trust value, through signal processing of the wireless channels. Furthermore,
in Fig. 19.2 examples of PHY context aware PLS were shown, with several possible inputs on the left,
and several possible outputs on the right. This could include measurements of channel quality, agent
mobility, distance between agents or between agents and infrastructure such as communication towers; and
the processing of these quantities to arrive at physical unclonable functions, secret key generation, and radio
fingerprinting, which in turn enhance trust and security of the system. This figure also indicates the possible
role of AI and data-driven tools for processing raw inputs to arrive at outputs of interest for physical layer
security. Below, key takeaways of our analysis on trustworthiness and resilience of future networks were
summarized:

• Key Point 1: Future CPS would integrate communication, sensing, and control—creating new vulner-
abilities that traditional cybersecurity could not fully address. Cryptography (e.g., PKI, certificates)
was developed to verify identity, but not behavior, protect against outsiders but would fail against

1Edge and on-device intelligence will enable real-time operation, without a human-in-the-loop, of autonomous agents in 6G,
thus rendering it an “AI-native” generation.
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Figure 19.1: Example of an Angle-of-Arrival wireless “fingerprint” for two unique senders (left) and two
Sybil agents (right).

malicious insiders and could be too slow or heavy for spontaneous, low-latency CPS interactions (e.g.,
between vehicles or drones).

• Key Point 2: The PHY could now aid in building trust using PLS and more broadly trustworthy
localization and physical, context-aware, verification. In many practical scenarios, trust and reputation
systems could be enhanced to detect behavioral attacks by cross-checking the location, speed, and
movement patterns of autonomous CPS.

• Key Point 3: The path forward consisted in combining authentication, contextual sensing, and ML-
driven behavioral trust into adaptive, multi-layered trust frameworks for resilient CPS.

• Core insight: Authentication was necessary but not enough — true trust demanded online, context-
aware validation of both identity and behavior.

19.3 Trust and Reputation Management

19.3.1 Proposed Methodology

Motivated by the above framework, in [13], we proposed a global trust and reputation management (TRM)
framework for 6G CPS networks. We highlighted that authentication alone was insufficient for autonomous
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Figure 19.2: Conceptualization of PHY context-aware PLS.

agents that continuously exchange physical-state data such as position, speed, or sensor readings. These
measurements could be falsified in propagation across multiple agents, raising questions about how to validate
information integrity.

Figure 19.3: Map visualization for two test cases (a) successful bogus information attack successfully and
(b) unsuccessful attack – detected and prevented. The red marker indicates the malicious vehicle while the
green markers represent benign vehicles.

19.3.2 Numerical Results and Analysis

To support our arguments, we performed simulations, during which a VANET collected real-time data
exchanged between vehicles and infrastructure, including information on location, speed, and acceleration;
these were analyzed to identify mis-behavior, as shown in Fig. 19.4. We used Eclipse MOSAIC to develop
a small-scale attack scenario. It took place in an urban setting around the area of the ETIS campus in Cergy,
France, with a simple road topology, including a main route and an alternative route. One of the vehicles
in the middle of a convoy played the role of an attacker, broadcasting fake decentralized environmental
notification message (DENM) messages to notify about non-existing obstacles on the main route, causing
vehicles within a certain radius to redirect to an alternative (sub-optimal) route, as shown in Fig. 19.3.
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Figure 19.4: Vehicle speed graph for two test cases (a) bogus information attack successfully propagated and
(b) attack detected and prevented.

Furthermore, we proposed two approaches for TRM. First, a framework was designed to maintain network
security by combining multi-layer data from physical layer (PHY) signals and the information from the upper
layers, leveraging ML to improve the capability of detecting attacks or misbehavior while enhancing the
system’s robustness. In Fig. 19.5, we presented this first possible architecture.
Finally, we proposed to incorporate additional planes including communication, sensing, and semantics
to collect further information from the environment and correlate them with the data collected from the
network. For example, the data collected in VANET could include GPS coordinates, velocity, acceleration,
weather sensor data, camera images from the sensing plane; signal strength, packet transmission rates from
the communication plane, and the meaning and context behind the data being transmitted from the semantic
plane. This was captured in the second proposed TRM approach, shown in Fig. 19.6.

19.4 AoA–ToF-Based Impersonation Attack Detection

19.4.1 Proposed Methodology

In [14], we exemplified the use of physical-layer signal processing of CSI to enhance positioning accuracy, for
trust enhancement as discussed in previous sections. We proposed three key techniques: (i) CSI sanitization,
(ii) subarray-based AoA estimation, and (iii) extraction of other unforgeable sensing features such as ToF.
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Figure 19.5: Multi-layer architecture for TRM framework.

Figure 19.6: Multimodal attention fusion architecture for TRM framework.

These features allowed us to detect proximal impersonation attacks.
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Figure 19.7: 3D localization accuracy using AoA and ToF (x axis in meters), suing simple classifiers (linear
regression, support vector machine, random forest

19.4.2 Numerical Results and Analysis

It was demonstrated that AoA alone was limited when attackers were on similar directions as legitimate
users. Albeit, jointly using AoA and ToF enabled very high positioning accuracy (up to 100% under certain
shifts). This work showed how joint multiple physical unforgable features, such AoA and ToF, provided finer
spatial discrimination than theoretical ToF resolution limits (based solely on frequency domain analysis),
dramatically improving the trustworthiness of PHY-layer authentication.
It was concluded that combining AoA and ToF sensing significantly increased trustworthiness by enabling
robust physical-layer impersonation detection even under challenging proximity conditions, as shown in Fig.
19.7, in which a positioning accuracy of 2 meters was achieved on the Nokia dataset discussed in Chapter 3.
We are currently working on distance bounding protocols using AoA and ToF.

19.5 Joint Sensing–Communication Channel Estimation

19.5.1 Proposed Methodology

In [15], we flipped our focus on the inter-relation between CSI accuracy and sensing accuracy and introduced
a novel channel estimation algorithm enhanced by radar sensing information to improve the accuracy of
channel estimation. This algorithm combined environmental insights gathered from radar sensing with
compressed sensing methods for channel estimation, enabling accurate assessment of channel states without
relying on a large number of pilot signals. Key advantages of this approach included reduced pilot overhead
in MIMO systems and improved estimation performance, both of which were crucial for optimizing spectral
efficiency and minimizing system complexity.
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19.5.2 Numerical Results and Analysis

To evaluate the effectiveness of the proposed algorithm, we conducted extensive simulations comparing its
performance with traditional channel estimation techniques across various conditions. The results consis-
tently demonstrated that our sensing-aided channel estimation algorithm achieved higher accuracy, regardless
of the complexity of the propagation environment. Integrating radar sensing into channel estimation thus
represented a promising direction for enhancing the efficiency and performance of wireless communication
systems. The numerical results depicted in Fig. 19.8 demonstrated the enhancement in terms of normalized
mean square error of the proposed approach against state of the art.

Figure 19.8: Normalized mean square error and error performance comparison of radar assisted channel
estimation with the state of the art.

Future research could explore adaptive sensing strategies that adjust radar parameters in real time, extend the
approach to multi-user and multi-cell environments to manage interference, and implement hardware tests
to evaluate practical performance and scalability in real-world applications

19.6 Enhancing the Trustworthiness of Multi-Slice 6G Networks Through
Hierarchical, Environment-Aware Resource Allocation

19.6.1 Proposed Methodology

In [16] we addressed trustworthiness in multi-slice 6G networks. We formulated network slicing and user
scheduling as a multi-objective, constrained optimization problem and proposed a hierarchical reinforcement
learning (RL) framework with an inter-slice agent that allocates resources fairly across slices to maximize
the number of satisfied users, and intra-slice agents that independently schedule users within slices to
enhance trustworthiness, quantified through metrics related to reliability, availability, and fairness. A major
contribution was the integration of environment-aware knowledge such as LoS / NLoS conditions, which
directly related to physical-layer trust metrics. Working in an indoor factory floor set-up, as clutter density
increased, trustworthiness declined due to poor channel conditions, but our RL agents adapted effectively to
maintain higher availability and fairness.
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19.6.2 Numerical Results and Analysis

We evaluated the proposed method under two scenarios. In both scenarios, ultra relable low latency
communications (URLLC) and mobile broadband reliable low latency communications (MBRLLC) slices
demanded random latencies between 2.16 and 2.6 ms, while the enhanced mobile broadband (eMBB) and
MBRLLC slices requested data rates of [8, 11.25] Mb/s in Scenario 1 and [11.25, 16] Mb/s in Scenario 2.
Since no existing method directly optimized the defined trustworthiness metrics through resource allocation
and network slicing, we evaluated the performance of the proposed method against a heuristic baseline that
used the same inter-slice resource allocation from our framework but applied a heuristic intra-slice schedule.
The simulation results demonstrated that the proposed method found a balance between these trustworthiness
metrics in dense and cluttered 6G network environments. Future work will incorporate more trustworthiness
aspects, such as security and privacy. A sample of numerical results is shown in Fig. 19.9 with respect to
user satisfaction in the two scenarios.

Figure 19.9: Satisfied user in scenarios one and two.

19.7 Privacy by Design

19.7.1 Proposed Methodology

In [74], we considered a location-based application that leverages edge servers to process users’ data while
meeting QoS requirements, such as minimum average throughput and maximum latency. We developed
a scheme that maintains the desired quality of service (QoS) while preserving user location privacy. The
proposed model assumes that the users share perturbed locations generated using differential privacy, which
adds controlled noise to obscure their real positions. Based on the reported location, each user is perceived
to be associated, at the radio level, with the access point closest to the perturbed location. In this solution,
while the application remains unaware of the underlying routing details, a trusted party routes data from real
locations to the perturbed ones before handing it off to the application servers. Although the application
is aware of its reserved cloud computing resources and can scale them according to the perceived needs, it
does not have access to internal network routing information. This design permits multiple network routes
to enhance privacy, at the cost of increased link utilization. The illustration of the system model is given by
Fig. 19.10.

19.7.2 Numerical Results and Analysis

We formulated the joint radio, link, routing, and processing resource allocation problem under privacy
and latency constraints using a two-phase MILP framework. The first phase aimed to enhance the privacy
guarantees of users by exploiting the system resources, while the second allocated the resources after
perturbing the location in accordance with the assigned privacy guarantees. We evaluated multiple MILP
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Figure 19.10: System model illustration.

variants : 1) maximizes privacy first and then the number of served users under latency constraints, 2) defines
privacy to its required level and maximizes the served users under latency constraints, 3) defines privacy to
its required level fixes privacy maximizes the served users while minimizing total latency, 4) a variant where
privacy constraints were canceled, focusing solely on satisfying latency requirements, 5) a version where
privacy constraints were canceled and latency was handled on a best-effort basis in the objective function.
Key takeaways:

• Uncontrolled privacy maximization harms QoS. Increasing privacy at the cost of latency reduces
user admission, necessitating a cap on additional privacy.

• Latency relaxation can boosts performance. Relaxing delay constraints in high-load scenarios to
serve more users.

• Privacy enhancement is resource-sensitive. As load increases, increasing privacy becomes harder
for variant 1.

• MILP suits static conditions. It is usable when changes are infrequent; dynamic environments need
heuristics or learning.

• PS-LS offers the best tradeoff. It meets privacy and latency requirements with the least execution
time.

19.8 Integration with the Architecture

Across all the above works, we observed a unifying vision of 6G trust based on i) Physical integrity through
AoA/ToF sensing; ii) Behavioral trust for multi-agent systems judged by actions, not only identities; and
iii) Context-awareness, starting at the PHY with LoS / NLoS, clutter, and radar information strengthened
trust estimation. These analyses and related algorithms were incorporated in the PLS closed loop within the
following components CENS01, CENS04.
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Chapter 20

Predictive Modeling for RF Fingerprint
Evolution

In chapter 4, GOHM addressed the challenge of receiver invariance in RFFI, focusing on how to identify
devices across different receivers. However, RFFI systems face another critical challenge: temporal drift.
The accuracy of a RFFI model can degrade over time. For instance, a model that is trained and optimized on
data collected during a single day typically performs well immediately. However, if that same model is tested
on data collected from the same devices the following day or week, it often experiences a significant drop in
classification accuracy [75]. This phenomenon suggests that the physical signature of a device is not entirely
static but evolves over time. This chapter introduces RF-PREDICT, the work focused on understanding
these temporal changes to maintain high identification accuracy over long operational periods.

20.1 Background and Motivation

Physical layer authentication works effectively if the device’s signal remains consistent. However, hardware
characteristics change slightly as time passes. The analog components inside a device are affected by heat,
usage patterns, and environmental stress [76]. Changes in ambient temperature or battery voltage may cause
the resulting radio signal to appear different to the receiver [77]. If this temporal drift is not accounted for,
the RFFI model may increasingly misclassify legitimate devices over time.
Maintaining RFFI system accuracy over time can be challenging for practical large-scale IoT deployments
[78]. Some existing approaches require periodic fingerprint maintenance and/or model updates, which can
become increasingly costly and operationally difficult as device populations scale. The goal of this work is to
characterize and predict temporal evolution patterns in RF fingerprints, supporting adaptive authentication
systems that aim to maintain accuracy while reducing the need for frequent recalibration. By understanding
how signatures change over time, we can develop predictive maintenance strategies rather than reactive
approaches.

20.2 Proposed Methodology

To study these issues, we designed an experimental setup to collect long-term data. This setup utilizes the
same controlled environment and equipment described in the RF Fingerprint Migration work (Chapter 4).
The methodology focuses on identifying which factors cause the signal to change:

• Device Diversity: We use 30 custom IoT transmitters based on the TI CC13XX platform.
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• Power Profiles: To compare how batteries affect the signal versus stable power, half of the devices

(15) use DC power. The other half (15) run on batteries.

• Interval Transmission: Devices are programmed to send packets at different time intervals. These
intervals range from 15 seconds to 24 hours.

• Controlled Environment: We record data continuously using synchronized SDR receivers (Fairwaves
XTRX and Ettus B200).

Data Processing and Learning Framework: To analyze the long-term data, we have designed a processing
scheme based on strict chronological partitioning. Unlike random splitting, which may introduce data
leakage, the model will be trained exclusively on historical data and evaluated on subsequent future data.
This validation procedure simulates a realistic deployment where the security system must authenticate
devices based on their previously established profiles. The planned classification model will employ a
1-Dimensional CNN architecture optimized for time-series signal processing.

20.3 Numerical Results and Analysis

As of this deliverable, the RF-PREDICT testbed is active. We have completed the “Phase 1” baseline data
collection. In this phase, we captured approximately 25,000 packets for each device transmitting continuously
(every 6 seconds). This gives us a starting reference point for every sensor.
The ongoing “Phase 2” collection is currently recording data to capture the long-term changes. Figure 20.1
presents preliminary results from Phase 2, showing spectrograms from two devices (T29 and T30) at different
time points during the monitoring period.
The packet structure used for this dataset includes fields such as internal temperature and power level to help
us analyze the results later (details in Appendix G).

Figure 20.1: Spectrograms from Phase 2 long-term collection. Packet 1 (top row) and Packet 12 (bottom
row) are shown for devices T29 and T30, demonstrating device-specific spectral characteristics over time.

20.4 Contribution to 6G Physical Layer Security

This work aims to improve the robustness of PLS. By understanding how RF fingerprints change over time,
it becomes possible to build models that adapt to these changes. This could help maintain the accuracy of
the RFFI models without needing to re-enroll devices frequently.
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20.5 Integration with the Architecture

This predictive modeling work defines the CGHM02 demonstration component. Its primary objective
is to characterize the temporal evolution of RF signatures to address the challenge of signal drift. By
integrating these predictive capabilities into the PLCL architecture, the system can enhance the accuracy
stability of RFFI models. This ensures that device identification remains reliable over extended operational
periods, effectively mitigating performance degradation caused by component aging, environmental factors,
or irregular transmission intervals.
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Chapter 21

GAN-based Unsupervised Anomaly
Detection for 6G Cloud RANs

In this work, LIU addressed the generalized cross-layer anomaly detection component through unsupervised
learning approaches, aligning with Task 5.3’s objective. In particular, the framework operates at the intersec-
tion of physical and MAC layers by leveraging multiple KPIs spanning fronthaul traffic, thread scheduling,
and precision time protocol logs, resonating with the proposed cross-layer methodology that integrates in-
formation from layers proximate to the physical layer. The research presented in this work [79] originated
as a master’s student project at Linköping University and has progressed to a peer-reviewed publication at
Asilomar in 2025. The work remains at a proof-of-concept stage, having been tested exclusively on simulated
data from controlled scenarios with five user equipments, and the authors acknowledge several limitations
requiring further development, including the model’s current inability to generalize across different anomaly
types (such as Packet Data Convergence Protocol (PDCP) thread contention, radio interference, and MAC
thread contention) and the absence of root cause analysis capabilities beyond detection.

21.1 GAN-based unsupervised anomaly detection for 6G cloud RANs

RAN systems exhibit inherent complexity [80], necessitating continuous monitoring to prevent performance
degradation and maintain optimal user experience. These networks employ numerous key performance
indicators to assess system performance, generating substantial data volumes every second. This extensive
data production significantly complicates troubleshooting processes and accurate diagnosis of performance
anomalies [81]. Additionally, the highly dynamic characteristics of RAN performance require adaptive
methodologies capable of capturing temporal dependencies for reliable anomaly detection. Addressing
these challenges, this work presents RANGAN, an anomaly detection framework integrating a GAN with
a transformer architecture. To strengthen the capability of capturing temporal dependencies within data
streams, RANGAN utilizes a sliding window approach during data preprocessing. The evaluation of
RANGAN was conducted using the publicly available RAN performance dataset from the Spotlight project,
which is based on 5G network infrastructure. Experimental findings demonstrate that RANGAN achieves
promising detection accuracy, notably attaining an F1-score reaching 83% in identifying network contention
issues.

21.1.1 Background and Motivation

RAN constitute a critical infrastructure component enabling mobile connectivity for voice communications,
applications, and digital services. The increasing complexity of modern telecommunication systems, driven

Dissemination level: Public Page 133/228



Deliverable D5.2

Figure 21.1: A schematic view of the architecture of RANGAN.

by exponential growth in mobile data consumption and continuous technological evolution, has created
substantial challenges for network monitoring and maintenance [82]. Communication service providers
face mounting pressure to simultaneously deliver enhanced performance, ensure reliability, manage energy
efficiency, and maintain service quality in an increasingly competitive marketplace.
Anomaly detection in RAN environments encounters several fundamental challenges. The scarcity of
labeled datasets for training and validation represents a primary obstacle, as obtaining reliable labels in
operational networks is often impractical or prohibitively expensive [83]. Network environments exhibit
continuous changes in traffic patterns and software configurations, demanding adaptive detection mechanisms
that maintain effectiveness over time [84]. Furthermore, techniques successful in one domain frequently
fail to generalize across different contexts [85], and telecommunication data inherently contains noise and
missing values that complicate the distinction between normal variations and genuine anomalies. Traditional
approaches based on rule-based systems and statistical techniques rely heavily on predefined thresholds
and heuristics [86–89], demonstrating diminished effectiveness in dynamic environments. Recent research
has shifted toward advanced machine learning techniques, including variational autoencoder (VAE) with
long-short term memory (LSTM) networks [90], sparse autoencoders [91], and graph convolutional network
(GCN) with transformers [92].
The key contribution of RANGAN is the integration of GAN with transformer-based architectures specif-
ically designed for unsupervised cross-layer anomaly detection in RAN environments. Unlike existing
reconstruction-based methods or density-based clustering techniques, RANGAN leverages adversarial train-
ing to learn complex data distributions while employing transformer attention mechanisms to capture long-
range temporal dependencies in time-series KPIs data, enabling identification of contextual anomalies across
multiple time steps and layers without requiring labeled training data.

21.1.2 Proposed Methodology

The RANGAN framework introduces an unsupervised anomaly detection approach specifically designed
for identifying network contention in RAN. The architecture illustrated in Fig. 21.1 integrates a GAN with
transformer-based components to effectively capture complex temporal dependencies inherent in time-series
performance data.
The methodology employs the SpotLight dataset, which simulates network traffic generated by five user
equipments operating under distinct scenarios encompassing various traffic types: transmission control pro-
tocol (TCP) and User Datagram Protocol (UDP) traffic in uplink and downlink directions, file downloads
and uploads, video streaming, web browsing, and random ping patterns. The system monitors key perfor-
mance indicators aligned with 3GPP standards, spanning three primary categories: fronthaul traffic metrics
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Figure 21.2: Anomaly score assessed under different window sizes.

measuring uplink and downlink link usage, thread scheduling data capturing on-CPU and off-CPU runtimes,
and precision time protocol logs recording frequency, root mean square, delay, and maximum offset values.
Data preprocessing involves selecting informative KPIs and applying min-max normalization to scale values
within the normalized range. A sliding window technique partitions the time series into overlapping fixed-
length segments, enhancing the model’s capacity to learn temporal patterns effectively. This windowing
approach proves particularly crucial for identifying contextual anomalies where the significance of a data
point depends on its temporal neighborhood.
The GAN architecture consists of two primary components: a generator receiving latent input vectors
and producing outputs matching training sample dimensionality, and a discriminator trained to distinguish
between authentic and synthetically generated samples. Transformer blocks integrated into both components
employ attention mechanisms that assign dynamic weights to each time step based on relevance to others in the
sequence. This enables selective focus on the most informative segments when generating or discriminating
time-series data, substantially improving anomaly detection performance.

21.1.3 Experimental Results and Analysis

The evaluation employed standard anomaly detection metrics including precision, recall, F1-score, and
Area Under the Receiver Operating Characteristic Curve (ROC AUC). RANGAN achieved superior overall
performance compared to established baseline methods, attaining an F1-score of 0.83, precision of 0.75, and
recall of 0.93. The ROC AUC value of 0.78 indicates robust discriminative capability between normal and
anomalous instances, although the model produced 1,585 false positives.
Among comparative methods, the autoencoder approach demonstrated competitive but inferior results to
RANGAN, while traditional methods exhibited substantially weaker performance. The investigation of
sliding window size impacts revealed that larger windows generally enhance performance, with optimal
results achieved at window sizes of 50 and 60 time steps. Decreasing window sizes corresponded to
declining precision and increasing false positive rates, with the smallest tested window size producing
significantly degraded performance. Visualization of anomaly scores across different window sizes, shown
in Fig. 21.2, demonstrates that larger windows yield more distinct separation between normal and anomalous
segments. These findings highlight the importance of sufficient temporal context for effectively distinguishing
anomalous from normal behavior in RAN environments.
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21.2 Integration with the Architecture

The research demonstrates that deep learning models can achieve substantial performance in detecting
network contention within RAN. The proposed RANGAN framework attained the highest F1-score among
evaluated methods while maintaining a moderate false positive rate, with many false positives occurring
temporally proximate to genuine anomalies. Although deep learning approaches exhibited slightly elevated
false positive rates compared to traditional methods, this trade-off was offset by substantially higher recall
and the capability to identify contextual anomalies that simpler techniques frequently overlooked. The
experimental findings confirm that feature engineering through sliding window techniques significantly
enhances detection performance for time-dependent datasets, emphasizing the critical role of appropriate
temporal context selection in practical deployments.
The RANGAN framework is directly linked to the CLIU02 component, advancing Task 5.3’s objective
of cross-layer anomaly detection through unsupervised learning. Within the PLCL architecture, RAN-
GAN functions in the analysis stage, supporting physical-layer attack identification by detecting network
contention patterns across physical and MAC layers. The framework processes time-evolving KPIs data
(fronthaul traffic, thread scheduling, PTP logs) from the monitoring stage, distinguishing semantically sig-
nificant anomalies from benign variations through temporal dependency analysis. Outputs inform both
trustworthiness evaluation and actuation decisions regarding resource control and security feature activation.
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Chapter 22

Convergence Analysis of Semantics-Aware
Estimation Algorithm Enabling
Cross-Layer Anomaly Detection

In this work, LIU developed cross-layer anomaly detection methodologies involving semantic attributes of
information and learning attack phenomena, directly addressing LIU’s committed scope within the project.
This study [93] introduces a semantics-aware remote estimation framework for finite-state Markov chains
that explicitly integrates the AoCE as a semantic metric to quantify the significance and lasting impact of
estimation errors, aligning with the proposal’s emphasis on continuous learning and unsupervised learning
approaches for detecting zero-day physical-layer attacks. The framework operates across physical and MAC
layers by leveraging key performance indicators and employing the maximum a posteriori (MAP) estimator,
which utilizes AoI to assess the usefulness of aged information at the receiver, thereby capturing temporal
dependencies critical for detecting evolving attack patterns. The research has been submitted for publication
in a peer-reviewed journal (IEEE Transactions on Information Theory).

22.1 On the Role of Age and Semantics of Information in Remote Estimation
of Markov Sources

This component investigates semantics-aware remote estimation of finite-state Markov chains employing the
maximum a posteriori estimator, aiming to devise transmission policies that optimize estimation performance
under transmission frequency constraints. Two metrics were utilized: AoCE to quantify the significance
of estimation error at the transmitter, and AoI to measure the predictability of outdated information at
the receiver. The optimal transmission problem is formulated as a constrained Markov decision process
with unbounded costs. It is demonstrated that there exists an optimal simple mixture policy that randomly
selects between two deterministic switching policies with fixed probability. Notably, each switching policy
initiates transmission only when AoCE exceeds a threshold value depending on both AoI and instantaneous
estimation error. Sufficient conditions are further derived under which the switching policy simplifies to a
threshold policy admitting identical thresholds for all estimation errors. Leveraging these structural results,
the team developed an efficient structure-aware algorithm, Insec-SPI, that computes the optimal policy with
reduced computational overhead. These findings demonstrate that incorporating both AoI and AoCE yields
significantly improved estimation quality compared to using either metric alone.
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22.1.1 Background and Motivation

In emerging cyber-physical systems, the timeliness and contextual relevance of information frequently
outweigh mere signal fidelity, motivating semantics-aware remote estimation where emphasis transitions to
ensuring that conveyed information is fresh, significant, and aligned with system control objectives [94,95]. A
critical challenge is the lasting impact of consecutive estimation errors; prolonged errors generate increasingly
severe consequences, particularly in applications such as autonomous driving where failing to detect nearby
obstacles incurs costs growing exponentially with error persistence [96–98]. While AoI has emerged as the
predominant metric for quantifying information freshness, it has been considered inefficient for monitoring
Markov chains with zero-order hold estimators [99, 100].
This work reveals that for maximum a posteriori estimators, AoI becomes relevant by measuring the usefulness
of outdated information at receivers. By integrating AoI with the significance-aware AoCE metric that
assigns content-aware nonlinear age functions to different estimation error types, the framework captures two
complementary aspects: how long information has aged and how severe the consequences of current errors
become over time. This dual-metric approach enables transmission policies that balance communication
costs against escalating penalties of prolonged erroneous states, critical for detecting and responding to
evolving physical-layer attacks where delayed corrections can lead to cascading system failures.

22.1.2 System Model, Problem Formulation, and Methodology

The research considers remote estimation systems where sensors monitoring finite-state Markov chains
decide at each time step whether to transmit measurements based on current source states and delayed
channel feedback. Channel states follow Bernoulli processes indicating successful or failed transmissions,
with receivers employing MAP estimation rules that maximize conditional probabilities given all received
measurements. The MAP estimator’s AoI-based belief representation enables information usefulness to
depend on both age and content. Performance incorporates the AoCE metric through cost functions with
non-decreasing age functions imposing escalating penalties for prolonged errors. The optimal transmission
problem minimizes average semantics-aware cost subject to transmission frequency constraints, formulated
as a constrained Markov decision process.
The research establishes that 𝜆-optimal policies exist and demonstrates that sensors can discard historical
information by restricting to transmission rules depending only on current source states, latest updates, their
ages, and AoCE values. A fundamental result shows that switching policies suffice, with transmissions
triggered only when AoCE exceeds threshold values depending on source state, latest update, and AoI. The
research characterizes optimal policies: when transmission frequency under some 𝜆-optimal policy equals
the maximum allowed frequency, that switching policy is optimal; otherwise, optimal policies become
randomized mixtures selecting between two switching policies differing in one threshold value.

22.1.3 Algorithm Development and Computational Efficiency

The developed Insec-SPI algorithm comprises structured policy iteration modules computing switching
𝜆-optimal policies and intersection search modules updating Lagrangian multipliers, offering substantial
complexity advantages over classical unstructured approaches like relative value iteration that evaluate all
state-action pairs. The structured policy iteration exploits the known switching structure by searching for
threshold values in increasing order of AoCE, ensuring that if optimal actions for certain states involve
transmission, all states with higher AoCE values also transmit without further computation. For numerical
tractability, the algorithm operates over finite state spaces by truncating both AoI and AoCE using sufficiently
large bounds, justified because belief vectors converge exponentially fast in AoI and age process truncation
impacts diminish as maximum AoCE increases. The intersection search method far outperforms bisection
search by exploiting piecewise-linear and concave properties of Lagrangian costs, computing intersection
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Figure 22.1: (Left) Time complexity of different multiplier update methods. (Right) The Kullback-Leibler
divergence between the stationary distributions.

Figure 22.2: (Left) The system performance as a function of transmission cost 𝜆; (Right) The minimum
average cost achieved by different estimators.

points of tangents at search interval boundaries and terminating when intersection points locate on Lagrangian
cost curves, finding optimal multipliers in only a few iterations with time complexity independent of accuracy
tolerance.

22.1.4 Experimental Validation and Performance Analysis

Numerical results using Hamming distortion, exponential age functions, and three-state Markov sources
with AoI and AoCE truncation sizes of twenty time steps demonstrate that intersection search exhibits
significantly lower time complexity than bisection search, finding optimal multipliers in few iterations
regardless of accuracy requirements (see Fig. 22.1). Asymptotic optimality analysis using Kullback-Leibler
divergence shows that truncation errors decrease as truncation sizes increase, with increasing AoI truncation
offering dual benefits of reducing approximation errors and alleviating AoCE truncation impacts; while
zero-order hold estimators with minimal AoI truncation maintain significant distribution distances even
for large AoCE truncation, MAP estimators with larger AoI truncation achieve close approximations with
relatively small AoCE truncation. Policy structure analysis (Fig. 22.2) reveals that system performance
exhibits monotonic and piecewise constant characteristics, with deterministic optimal policies existing only
when maximum allowed transmission frequencies match value domains of transmission frequencies under
𝜆-optimal policies, otherwise requiring simple mixture policies. Performance evaluation demonstrates
that MAP estimators significantly outperform zero-order hold estimators especially when transmission
frequencies are constrained, and incorporating both AoI and AoCE yields significantly improved estimation
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quality compared to using either metric alone, validating the effectiveness of exploiting both age and
semantics of information in remote estimation systems.

22.2 Integration with the Architecture

The Insec-SPI framework is directly affiliated to the CLIU02 component, realizing remote state estimation
under heterogeneous significance in semantic errors and fulfilling Task 5.3’s objective. Within the PLCL
architecture, Insec-SPI contributes to the analysis stage’s physical layer trustworthiness evaluation by pro-
cessing Markovian sources and outputting stochastic optimization policies that balance estimation accuracy
against communication costs. The framework evaluates semantic significance through AoCE and provides
trustworthiness assessments based on AoI to guide actuation decisions regarding resource allocation and
security feature activation. The developed Insec-SPI algorithm efficiently computes optimal transmission
policies exhibiting simple switching structures, directly addressing CLIU02’s success criteria of reduced
transmissions while maintaining estimation quality.
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Chapter 23

Federated Authentication for 6G Networks

In this work, UNIPD studies a scenario where several authorized devices (collectively denoted as Alice) are
transmitting from several authorized areas. An attacker device, Trudy, is instead impersonating Alice, i.e.,
transmitting messages and claiming to be Alice. However, Trudy does not have access to the areas where
Alice is. Therefore, we propose that multiple BSs of a 6G network (collectively indicated as Bob) determine
whether the received signal comes from the authorized areas or not, to authenticate the received messages,
and determine whether they have been transmitted by Alice or not. The BSs collaborate to authenticate
the transmitting device at the physical layer. This problem can also be seen as a problem of a distributed
in-region location verification problem, [101].

23.1 Background and Motivation

In recent years, federated-learning (FL) has gained much interest as it allows different devices to collaborate
on a common objective without explicitly sharing their data. Each device, in fact, uses local data for local
training, then uploads the model to the server for aggregation, and finally, the server sends the global model
back to the participants. Different aggregation strategies can be employed by the server. One is FedAvg, in
which the server simply averages over the devices’ updates. This is a very effective method when the data are
i.i.d. across clients, but can perform poorly in the case of non-i.i.d. client data distributions. The problem of
non-i.i.d. data distributions is still open, and several strategies are proposed in the literature. The application
of federated learning in PLA is at its dawn, and to the best of our knowledge, only a few works have been
done, especially in non-IID contexts. This work thus focuses on federated authentication at the physical layer
in non-i.i.d. contexts, comparing state-of-the-art algorithms with a new, more lightweight proposed method.

23.2 Proposed Methodology

In this work, whose complete version is in Appendix H, we study a scenario where multiple BSs collaborate
to authenticate the transmitting device at the physical layer. The legitimate transmitter, Alice, can be located
in different areas; thus, each BS, Bob, needs to identify the transmitting area and, by knowing the legitimate
one, can authenticate Alice. Trudy, on the other hand, aims at impersonating Alice by transmitting from
another area with respect to Alice, thus fooling the BSs. The main contribution of this work is FedLoss, a
novel FL framework that tackles the non-IID data heterogeneity present in common wireless environments
via local fine-tuning. Each device, by implementing FedLoss, monitors the local training loss and switches
dynamically to local and federated training on demand. In particular, the contributions are as follows:

1. We propose a realistic channel model, taking as baseline the 3GPP specifications.

Dissemination level: Public Page 141/228



Deliverable D5.2
2. We present FedLoss, the FL framework able to tackle the non-IID data distributions via local finetuning.

3. We numerically evaluate FedLoss, demonstrating its effectiveness even in the case of challenging
channel conditions and scarcity of data.

23.3 Numerical Results

To validate the effectiveness of FedLoss, we compare it with three baselines, named Global, Single, and
FedAvg, considering all the possible transmitting positions of both Alice and Trudy. In the Global case,
there is a ”virtual” single BS that has a dataset containing all the BS data. This is optimal if the datasets
were formed by IID data, i.e., when the BS were located close enough to one another. In the Single case, on
the other hand, all the BS train on their own dataset, even if small. This approach is supposed to work well
when the BSs are far from each other; thus, sharing local information is damaging the overall performance.
Finally, in FedAvg, the BS perform the FedAvg algorithm.

23.3.1 Accuracy VS Epochs

Fig. 23.1 shows the average accuracy across the BSs as a function of the number of training epochs when the
average distance between BSs is 𝐷bs ≃ 1.1km. We notice that both Global and FedAvg perform poorly, as
expected for the very non-IID datasets across the BSs. The Single performs well despite the small training
dataset, but it gets outperformed by the proposed FedLoss, which achieves the best accuracy across all the
methods.

Figure 23.1: Accuracy VS Epochs for Single Client, Global, FedAvg, and the proposed FedLoss.
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23.4 Integration with the Architecture

We have presented an authentication scheme built on federated learning. In this approach, several 6G base
stations each train a local model—using their own estimated CSI – to decide whether a transmitter originates
from an authorized region. The models are trained collaboratively in a federated manner, yet allowing
each base station to capture the unique propagation conditions between itself and the transmitter by local
finetuning. This work falls under the PHY-Attack Identification block of the ROBUST-6G architecture, as
it pertains to PLA and the security-focused analysis of received signals. While no dedicated demonstration
component is provided, extensive simulations have been carried out to confirm the solution’s effectiveness.
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Chapter 24

Position-Based Cross-Layer Authentication
For Industrial Communications

In this study, UNIPD considers a robot (Alice) moving in an industrial environment while transmitting
messages to nearby endpoints through fixed APs. An intruder robot (Trudy) aims at transmitting malicious
messages to the endpoints, impersonating Alice. We aim at detecting Trudy transmissions by comparing
the expected position of the transmitter with two estimates of it obtained from a) the CSI estimated on the
signals received by the APs, and b) the traffic information in the network. Such estimates are obtained
with CNN and support vector regressor (SVR) models along with Kalman filters to exploit the trajectory
evolution. Numerical results obtained using the DICHASSUS dataset confirm the effectiveness of our
proposed solution.

24.1 Background and Motivation

With the dawn of Industry 4.0, AI, the IoT, and robotics are gaining much interest to improve efficiency,
productivity, and quality. In such a context, new information and communication (ICT) systems are used to
support entire supply chains, increasing the attack surface to malicious devices aiming to disrupt the industrial
infrastructure. Authenticating transmitters in such networks is a crucial task to ensure the integrity of the
transmissions. To this end, different strategies can be adopted, from conventional cryptographic schemes
to novel quantum cryptography, to lightweight physical-layer security mechanisms. Focusing on the latter,
the literature offers different strategies to authenticate transmitters directly at the physical layer. Concerning
cross-layer solutions, different strategies can be adopted. The first is to design hybrid protocols that combine
physical-layer-based with conventional key-based authentication schemes. The second provides detectors
that combine information from both layers. Still, when conventional PLS protocols cannot be applied (e.g.,
because the wireless channel conditions are not suitable), other strategies need to be adopted. This work
focuses on hybrid strategies that combine the physical layer with upper-layer information, ensuring more
robust security protocols.

24.2 Proposed Methodology

In this work, whose extended version is in Appendix F, we design an authentication protocol that fuses
information coming from the physical and upper layers in an industrial network context. Alice is a robot,
moving on a factory floor and communicating to neighboring endpoints via several APs, under the supervision
of a MAP, that monitors the physical-layer along with the traffic information. Trudy, on the other hand,
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aims at transmitting malicious messages to the endpoints, impersonating Alice. We aim at detecting Trudy
transmissions by comparing the expected position of the transmitter with two estimates of it obtained by
a) the CSI estimated on the signals received by the APs and b) the traffic information in the network. In
particular, a CNN is trained to estimate the transmitter position from the CSI, while a SVR uses the traffic
information in the network again to infer the robot position. The two predicted positions are then fed into
Kalman filters to refine them with prior estimates of the trajectory, and the refined position estimation is
lastly compared with the expected legitimate one. If the three positions are close enough, the message is
considered authentic; otherwise is rejected as fake.
In comparison with existing literature, the proposed solution has several novel features. Notably, we fuse
information from various layers to create position information, which is then compared using a statistical
test. This provides a better understanding of the detector’s behavior. Furthermore, we exploit the temporal
correlation of the information using the well-established Kalman filter.
The contributions of this work are as follows:

1. The fusion of information coming from different layers passes through a common estimate of the
device position rather than as a mixed input to an ML model.

2. The refinement of the estimated positions by Kalman filters to take into account the temporal evolution.

3. A cross-layer-detector (CLD), a lightweight ML framework constituted by a CNN and a SVR, that
estimate the transmitter position using CSI and connectivity data, respectively.

4. A continuous learning approach is adopted to adapt the model to various conditions, keeping the model
simple and without forgetting what it has learned in the past.

5. The performance assessment of the proposed solution on both synthetic and real-world data.

24.3 Numerical Results

In this section, we describe the data we used to validate our framework and evaluate the security performance
in terms of FA probability, i.e., the probability that Alice is misled to Trudy

𝑃fa = P(Ĥ = H1 |H = H0) , (24.1)

and the MD probability, i.e., the probability that Trudy is misled to Alice

𝑃md = P(Ĥ = H0 |H = H1) . (24.2)

The FA/MD probabilities against the attacks, as well as the localization performance for different ML
strategies and scenario parameters, are explained in the following subsections.

24.3.1 Performance With Static End-points

We begin our analysis by showing the behavior of our framework against the WPWT, WPCT, and CPWT
attacks for various Trudy distances 𝐷max. Fig. 24.1 shows the DET of the proposed authentication
mechanism, obtained by varying the decision threshold 𝜙. Among the attacks, the least effective is WPWT,
as it contains anomalies both at the physical and upper layers. Comparing the WPCT and CPWT attacks,
we notice that their effectiveness depends on the localization accuracy, which in turn highly depends on the
system conditions. Lastly, we observe that our framework is also effective against the CPWT attack, which
would otherwise remain undetected in [102] and [103], thus we demonstrate the superiority of our protocol
over state-of-the-art CSI-only based protocols.
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Figure 24.1: DET curve of CLD against the Wrong-Physical-Wrong-Traffic (WPWT) (squares), Wrong-
Physical-Correct-Traffic (WPCT) (triangles) and Correct-Physical-Wrong-Traffic (CPWT) (circles) attacks
and at different Trudy distances 𝐷max = 1.5 m (solid-blue line) and 𝐷max = 2 m (dashed-green line).

24.4 Integration with the Architecture

We presented a machine-learning–based approach for threat detection that fuses data from multiple network
layers. Specifically, we combine insights from the physical layer and the network layer to authenticate
messages within an industrial-automation scenario. This method fits within the PHY-Attack Identification
module of the ROBUST-6G architecture, as it analyzes signal characteristics to uncover malicious activity,
and it will be evaluated as part of the CUPD05 component.
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Appendix A

RF Fingerprint Migration

A.1 Neural Network Architecture

The deep learning model employed for the domain adaptation task comprises two main modules: a feature
extractor (Encoder) and a classifier. The Encoder utilizes a series of 1D convolutional layers to process the
raw I/Q samples. The specific hyperparameters for the layers are chosen to balance computational complexity
with feature extraction capability. The Classifier consists of three fully connected layers ending in a Softmax
activation for the 30 device classes. The specific architecture used to generate the results in this deliverable
is detailed in Table A.1.

Table A.1: Deep Learning Model Architecture (Encoder and Classifier)

Layer Type Filters/Units Kernel Size Stride Activation

Feature Extractor (Encoder)

Conv1D 32 7 2 ReLU

Conv1D 64 3 2 ReLU

Conv1D 128 3 2 ReLU

Conv1D 256 3 2 ReLU

Global Avg Pool - - - -

Linear 256 - - ReLU

Classifier Head

Linear 128 - - ReLU

Linear 64 - - ReLU

Linear 30 (Classes) - - Softmax
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A.2 Experimental Environment

The dataset was collected in a controlled indoor environment to minimize external interference while isolating
hardware-specific effects. The following figures depict the physical deployment of the testbed used for the
migration experiments.
Figure A.1 shows the synchronization of the three SDRs used as receivers (Two Fairwaves XTRX and one
Ettus B200 Mini).

Figure A.1: The receiver array setup consisting of synchronized XTRX and B200 Mini SDRs.

Figure A.2 displays the array of the custom-built IoT transmitters used in the experiment. These devices
are manufactured to identical specifications, serving as the source devices for the fingerprinting task. Since
the devices are manufactured to identical specifications, the classification is driven not by obvious design
differences across devices, but by hardware-induced characteristics in the RF signal.
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Figure A.2: The set of 28 identical, custom-manufactured IoT transmitters used to evaluate the RF finger-
printing migration.

A.3 Intermediate Results

To assess the effectiveness of the proposed ADDA method, we conducted an evaluation across six different
source-target receiver pairs. The results in Table A.2 represent a snapshot of the current development status.
The accuracy results demonstrate that the adaptation process effectively recovers a significant portion of
the classification accuracy lost due to receiver variability. This is particularly evident in transfers between
receivers, where improvements often exceed 20 %.
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Table A.2: Intermediate Accuracy Scores: Impact of Domain Adaptation

Source RX Target RX Source Acc. Target Acc. (Pre) Target Acc. (Post) Improvement

R01 (XTRX) R02 (XTRX) 93.08 % 85.08 % 90.39 % +5.31 %

R01 (XTRX) R03 (B200) 87.65 % 47.66 % 74.71 % +27.05 %

R02 (XTRX) R01 (XTRX) 90.92 % 66.01 % 85.58 % +19.57 %

R02 (XTRX) R03 (B200) 91.64 % 37.87 % 71.76 % +33.89 %

R03 (B200) R01 (XTRX) 95.13 % 42.73 % 70.33 % +27.60 %

R03 (B200) R02 (XTRX) 89.57 % 48.39 % 72.66 % +24.27 %

A.4 Detailed Confusion Matrices

This section presents the comprehensive results of the domain adaptation experiments. The confusion
matrices below illustrate the classification performance for each source-target receiver pair. For every
scenario, three matrices are provided: the Source Baseline, the Target Before Adaptation (showing the
impact of hardware impairments), and the Target After Adaptation (showing the recovery of performance).

Figure A.3: Adaptation Scenario: R01→ R02.
Source Domain: XTRX (R01). Target Domain: XTRX (R02).
Performance: Accuracy improved from 85.08% to 90.39% (+5.31%).
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Figure A.4: Adaptation Scenario: R01→ R03.
Source Domain: XTRX (R01). Target Domain: B200 (R03).
Performance: Accuracy improved from 47.66% to 74.71% (+27.05%).

Figure A.5: Adaptation Scenario: R02→ R01.
Source Domain: XTRX (R02). Target Domain: XTRX (R01).
Performance: Accuracy improved from 66.01% to 85.58% (+19.57%).

Figure A.6: Adaptation Scenario: R02→ R03.
Source Domain: XTRX (R02). Target Domain: B200 (R03).
Performance: Accuracy improved from 37.87% to 71.76% (+33.89%).
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Figure A.7: Adaptation Scenario: R03→ R01.
Source Domain: B200 (R03). Target Domain: XTRX (R01).
Performance: Accuracy improved from 42.73% to 70.33% (+27.60%).

Figure A.8: Adaptation Scenario: R03→ R02.
Source Domain: B200 (R03). Target Domain: XTRX (R02).
Performance: Accuracy improved from 48.39% to 72.66% (+24.27%).
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Appendix B

Security Analysis of RIS-Assisted
Physical-Layer Authentication Over
Multipath Channels

Accepted for IEEE WIFS 2025 conference.
by Linda Senigagliesi, Anna V. Guglielmi, Marco Baldi, and Stefano Tomasin

Abstract: In physical layer authentication, verification of a user’s identity is based on the characteristics
of the transmission channel through which signals are delivered to the authenticator (Bob). In this paper,
we assume that the signals received by Bob pass through a RIS (controlled by Bob) and that the legitimate
transmitter (Alice) is equipped with one antenna. Conversely, the attacker (Trudy) has multiple antennas
and uses precoding to deceive Bob’s verification. Assuming that Trudy knows all the channel matrices, we
first derive her optimal attack strategy. Then, we analyse the conditions under which the channel estimated
by Bob is indistinguishable when either Alice or Trudy is transmitting. When Trudy has a single antenna,
we show that the indistinguishability condition cannot be met when the channels to the RIS are the result
of propagation over multiple paths. For single-path line-of-sight (LOS) conditions, instead, Trudy can
impersonate Alice, although transmitting from a different position. We verify these results numerically and
assess the security of the considered scenario, even when the indistinguishability conditions cannot be met.

B.1 Introduction

Authentication is the process by which a receiver can verify the identity of a transmitter. Authentication
mechanisms based on cryptographic algorithms remain secure provided that no computational breakthrough
occurs, i.e., for new attack algorithms or the introduction of quantum computing. They typically entail high
complexity, unsuitable in scenarios with limited power and computational resources, e.g., the Internet of
Things. Alternative approaches are based on information-theoretic or physical-layer security, which are not
affected by the computational capability of attackers. In PLA, transmitters are differentiated only based on
the electromagnetic characteristics of their transmission channels.
PLA has been studied in the literature for quite some time, using various features of received signals, such
as channel frequency response (CFR) and channel impulse response (CIR), to distinguish a legitimate user
from a potential attacker, [30]. Recently, the AoA of the signal has been shown to be a robust feature for
PLA, [21,104]. In addition, user classification has been done using both classical statistical approaches and
modern tools based on machine learning.
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Figure B.1: System model.

In parallel, wireless communications have evolved through the introduction of RISs that, with their ability
to shape the propagation environment, improve energy efficiency, reduce hardware complexity, and improve
coverage. RISs have also been considered to improve PLA. Variable and random configurations can be set
on the RIS to generate challenge-response pairs and propose a challenge-response PLA protocol based on
the CSI, [60, 61, 65, 105]. In [106], the authors consider CFR-based PLA in the presence of a hybrid RIS,
also capable of acting as a receiver and estimating the channels of impinging signals; thus, this estimate is
exploited for authentication. Authentication in a scenario with an RIS is studied also in [107], however, also
exploiting pre-shared keys used for asymmetric cryptography; thus, it cannot be considered working purely
at the physical layer. In [108] PLA based on the CIR in a dynamic wireless communication environment, is
studied, and convolutional neural networks are used to perform classification: this overcomes the limitations
of the classical statistical approach based on hypothesis testing when the wireless channel is time-varying.
In this paper, we consider that signals received by Bob are reflected through a RIS that he controls, and
the legitimate transmitter, Alice, is equipped with a single antenna. In contrast, the adversary, Trudy,
possesses multiple antennas and employs precoding techniques to attempt to bypass the verification process.
Assuming Trudy has full knowledge of all channel matrices, we first determine her optimal attack strategy.
We then examine the conditions under which Bob’s channel estimation is identical regardless of whether
Alice or Trudy is transmitting. When Trudy is limited to a single antenna, we derive conditions based on
the angle of arrival at the RIS. Our analysis shows that under multipath propagation conditions to the RIS,
the indistinguishability requirement cannot be satisfied. However, in the case of a single-path line-of-sight
(LOS) scenario, Trudy can successfully impersonate Alice by transmitting from a different location. These
findings are supported by numerical simulations. We also evaluate the system’s security in situations where
indistinguishability cannot be achieved.
The rest of the paper is organized as follows. Section B.2 presents the system model. Section B.3 describes
the PLA mechanism and, then, in Section B.4, a security analysis is performed, focusing on conditions that
make the attack indistinguishable from a legitimate signal. Numerical results are discussed in Section B.5
and, finally, conclusions are drawn in Section B.6.

B.2 System Model

We consider the uplink scenario shown in Fig. B.1, where the base station (BS) (Bob) aims to authenticate
a user equipment (UE) (Alice) in a single-input multiple-output (SIMO) communication system, with Alice
equipped with a single antenna and Bob with a uniform linear array (ULA) of 𝑀 antennas. The signal
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transmitted by Alice reaches Bob through a reconfigurable intelligent surface (RIS), while a blockage
obstructs the Alice-Bob direct link. An attacker device, Trudy, attempts to impersonate Alice by transmitting
messages that Bob may mistake as originating from Alice. Trudy is equipped with a ULA of 𝑁T antennas.
We also assume that no direct communication is possible between Trudy and Bob, and that all of her messages
are transmitted through the RIS.
Transmissions occur at millimeter-wave (mm-Wave) frequencies. ULA antennas are uniformly spaced by a
distance 𝑑 = 𝜆𝑐/2, where 𝜆𝑐 is the carrier wavelength. Moreover, we assume that the field of view of Bob is
120◦.
The RIS, controlled by Bob, has 𝑁 reflecting elements spaced by the same distance 𝑑. The 𝑛-th element,
𝑛 = 0, 1, . . . , 𝑁 − 1, of the RIS introduces a phase shift 𝜔𝑛 = 𝑒 𝑗 𝜑𝑛 on the equivalent baseband signal and has
unitary gain. The RIS configuration matrix is defined as

𝛀 = diag{[𝑒 𝑗 𝜑0 , . . . , 𝑒 𝑗 𝜑𝑁−1]}. (B.1)

We denote the baseband equivalent vector for the channel from Alice to the RIS as 𝒇 ∈ C𝑁×1, the channel
matrix from the RIS to Bob as 𝑮 ∈ C𝑀×𝑁 . Thus, the resulting Alice-RIS-Bob cascaded channel is

𝒉ARB = 𝑮𝛀 𝒇 . (B.2)

Alice transmits suitable pilot symbols to let Bob estimate the channel, which is used for authentication. The
pilot signal is assumed to be known to Trudy.
We denote as 𝑻 the matrix of the channel from Trudy to the RIS. To impersonate Alice, Trudy precodes the
transmitted signal (including pilots) with vector 𝒒 and the resulting Trudy-RIS-Bob channel is then

𝒉TRB = 𝑮𝛀𝑻𝒒 ∈ C𝑀×1. (B.3)

All channels ( 𝒇 , 𝑮, and 𝑻) are time-invariant.

B.2.1 Channel Model

In the presence of objects around the transmitter and the receiver, the transmitted signal reaches the receiver
through multiple paths. At the mmWave band, channels typically have only a few relevant paths; thus, we
use a geometric model for their description. We define the 𝐾-size array response column vector for angle of
arrival (AoA) 𝜃 as

𝒆𝐾 (𝜃) =
1
√
𝐾
[1, 𝑒− 𝑗

2𝜋
𝜆𝑐
𝑑 sin 𝜃

, . . . , 𝑒
− 𝑗 (𝐾−1) 2𝜋

𝜆𝑐
𝑑 sin 𝜃 ]𝑇 . (B.4)

For a generic channel with 𝐿 paths, we define the 𝐿-paths array response matrix with AoA angles 𝜽 =

[𝜃1, ..., 𝜃𝐿]𝑇 as
𝑬𝑁 (𝜽) = [𝒆𝑁 (𝜃1), ..., 𝒆𝑁 (𝜃𝐿)] . (B.5)

Let 𝐿 𝑓 be the number of paths between Alice and the RIS, and 𝜙 𝑓 ,𝑙, 𝜃 𝑓 ,𝑙, and 𝛾 𝑓 ,𝑙 represent the angle-of-
departure (AoD) at Alice, the AoA at the RIS, and the complex path gain for the 𝑙-th path i.e., 𝑙 = 1, ..., 𝐿 𝑓 ,
respectively. Let us also define 𝝓 𝑓 = [𝜙 𝑓 ,1, ..., 𝜙 𝑓 ,𝐿 𝑓

]𝑇 and 𝜽 𝑓 = [𝜃 𝑓 ,1, ..., 𝜃 𝑓 ,𝐿 𝑓
]𝑇 . Moreover, 1𝐿 𝑓

,
𝑬𝑁 (𝜽 𝑓 ), and 𝚪 𝑓 = diag( [𝛾 𝑓 ,1, ..., 𝛾 𝑓 ,𝐿 𝑓

]𝑇 ) denote the 𝐿-size column vector of ones corresponding to
Alice’s array response matrix, the RIS array response matrix, and diagonal path gain matrix, respectively.
The baseband channel matrix between Alice and the RIS is modeled as [109]

𝒇 =

√︄
𝐾𝑁

𝐿 𝑓

𝐿 𝑓∑︁
𝑙=1

𝛾 𝑓 ,𝑙𝒆𝑁 (𝜃 𝑓 ,𝑙)𝒆𝐻1 (𝜙 𝑓 ,𝑙) = 𝑬𝑁 (𝜽 𝑓 )𝚪 𝑓 1𝐿 𝑓
. (B.6)
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The RIS-Bob channel matrix is modeled as

𝑮 = 𝑬𝑀 (𝜽𝐺)𝚪𝐺𝑬𝐻𝑁 (𝝓𝐺) ∈ C𝑀×𝑁 , (B.7)

where 𝜽𝐺 and 𝝓𝐺 are the vectors of AoAs to Bob and AoDs from the RIS, and 𝚪𝐺 is the diagonal matrix of
path gains.
Similarly, the Trudy–RIS channel is modeled as

𝑻 = 𝑬𝑁 (𝜽𝑡 )𝚪𝑡𝑬𝐻𝑁𝑡
(𝝓𝑡 ) ∈ C𝑁×𝑁T , (B.8)

where 𝜽𝑡 and 𝝓𝑡 are the vectors of AoAs to the RIS and AoDs from Trudy, and 𝚪𝑡 is the diagonal 𝐿𝑡 × 𝐿𝑡
matrix of the 𝐿𝑡 path gains.

B.2.2 Assumptions on Trudy

Trudy is assumed to perfectly know all the channels, including the Alice-RIS and RIS-Bob channel matrices
𝒇 and 𝑮. This assumption is very generous to Trudy, because she typically is neither co-located with Alice
nor Bob. Moreover, the channels corresponding to 𝒇 and 𝑮 are only experienced in cascade through the
RIS. Note that Alice and Bob can easily estimate the overall cascaded Alice-RIS-Bob channel, while it
is harder for them, and even more so for Trudy, to estimate the individual channels represented by 𝒇 and
𝑮. Consequently, considering the attacker with complete channel knowledge will result in a conservative
estimate of the security performance, corresponding to a worst-case condition for the legitimate receiver.
We also assume that Trudy chooses the transmit power without restrictions. Finally, we assume that neither
Alice nor Bob knows the instantaneous channels with Trudy nor their statistics. In particular, Alice and
Bob do not know where Trudy is located, so they cannot infer anything about the propagation of signals
transmitted or received by Trudy.

B.2.3 Communication-Optimal RIS Configuration

Since the RIS is used for communication purposes between Alice and Bob, its configuration should be
optimized accordingly by Bob. We indicate the communication-optimal RIS configuration maximizing the
spectral efficiency as

𝛀 = diag(𝑒 𝑗 𝜑̄1 , . . . , 𝑒 𝑗 𝜑̄𝑁 ), (B.9)

where 𝜑̄𝑛, 𝑛 = 0, . . . , 𝑁 − 1, represent the communication-optimal phase shifts of the 𝑁 RIS elements.
Various works in the literature have proposed methods for optimizing the RIS configuration. Here we
consider the technique of [110].

B.3 Physical Layer Authentication Mechanism

We consider a physical-layer authentication (PLA) mechanism, where Bob aims at deciding between the two
hypotheses

H0 : the signal comes from Alice,
H1 : the signal comes from the attacker Trudy.

To this end, the channel vector estimated by Bob operates as a distinguishing feature between the transmissions
done by Alice and Trudy.
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The PLA mechanism includes two phases, namely the association and verification phases. Since we assume
that Bob does not know the cascade channel when Trudy is transmitting, we will not exploit this information
for PLA.
In the association phase, Alice transmits some known pilot signal 𝑠0 to Bob, who exploits its knowledge to
obtain a noisy estimate of 𝒉ARB that we denote 𝒉̄. We assume that such a phase is authenticated at a higher
layer; thus, it provides a reliable estimate of the Alice-Bob channel. The association phase has to be repeated
every time the Alice-Bob channel changes. In the subsequent verification phase, upon reception of a signal
Bob estimates the channel over which such a signal traveled, assuming that 𝑠0 was transmitted, and obtaining
the estimate 𝒉̂. Then, Bob performs a test on the obtained estimate to decide whether the transmitter was
Alice or not.
Let 𝒓 denote the signal received by Bob when Alice is transmitting. Assuming that Bob knows 𝑠0 and the
communication-optimal RIS configuration 𝛀 , the received signal is 𝒓 = 𝒉ARB𝑠0 + 𝒏, where 𝒏 is a circularly-
symmetric complex Gaussian vector with zero mean and variance 𝜎2

𝑛 per entry. Bob obtains an estimate of
the channel as

𝒉̂ =
𝒓

𝑠0
= 𝒉ARB +

𝒏

𝑠0
. (B.10)

Since we do not exploit any information on Trudy’s channel for this test, we resort to the likelihood test (LT)
on 𝒉̂, based on the norm-2 distance between the current channel estimate and that obtained in the association
phase [111], i.e.,

𝜁 = ∥ 𝒉̂ − 𝒉̄∥2. (B.11)

The LT providing a decision Ĥ between the two hypotheses is obtained by thresholding 𝜁 as follows

𝜁 < 𝜏 : Ĥ = H0, 𝜁 ≥ 𝜏 : Ĥ = H1, (B.12a)

where 𝜏 is a suitably chosen threshold.

B.3.1 Security Metrics

Two possible error events might occur in the authentication mechanism: the false alarm (FA), when Bob
discards a message as forged by Trudy while it is coming from Alice, and the misdetection (MD), when Bob
accepts a message coming from Trudy as legitimate.
Specifically, an FA occurs when, under hypothesisH0, 𝜁 ≥ 𝜏, whereas, an MD occurs when, under hypothesis
H1, 𝜁 < 𝜏. As security metrics, we then consider the probabilities of FA and MD, i.e.

𝑃FA = P[𝜁 ≥ 𝜏 |H0] , 𝑃MD = P[𝜁 < 𝜏 |H1] . (B.13)

B.4 Security Analysis

We now analyze the security of PLA for the considered scenario. The obtained results will highlight how the
structure of the channel, due to the few reflection paths, has an impact on the error probabilities of PLA. First,
we compute the optimal precoding vector for Trudy that maximizes the probability of her attack succeeding,
i.e., maximizes the MD probability. Then, we discuss the impact of the number of paths on the security.
Let us define the cascade channels when Alice and Trudy are transmitting as

𝒄A = 𝑬𝑀 (𝜽𝐺)𝚪𝐺𝑬𝐻𝑁 (𝝓𝐺)𝛀𝑬𝑁 (𝜽 𝑓 )𝚪 𝑓 1𝐿 𝑓
, (B.14)

𝒄T = 𝑬𝑀 (𝜽𝐺)𝚪𝐺𝑬𝐻𝑁 (𝝓𝐺)𝛀𝑬𝑁 (𝜽𝑡 )𝚪𝑡𝑬𝐻𝑁𝑡
(𝝓𝑡 )𝒒

= 𝒄′T𝒒 ,
(B.15)
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where 𝒒 is the precoding vector used by Trudy to try to falsify Alice’s channel. Then, the channel estimated
by Bob when Alice is transmitting can be written as 𝒉̂𝐴 = 𝒄A + 𝒏, while the estimated channel when Trudy
is transmitting with precoding vector 𝒒 is 𝒉̂𝑇 = 𝒄′T𝒒 + 𝒏̂.

B.4.1 Trudy Optimal Transmit Power

Trudy’s goal is to maximize the probability that Bob accepts her message as legitimate, i.e., to maximize
𝑃MD. Considering the likelihood (B.11) used in the LT, Trudy must choose 𝒒 to minimize 𝜁 , as Trudy knows
the Alice-Bob cascade channel 𝒄A. However, she does not know the noise of the estimate obtained by Bob
in the association phase. Therefore, we obtain the following impersonation optimization problem

𝒒★ = arg min
𝒒
∥𝒄′T𝒒 − 𝒄A∥2 . (B.16)

Now, we have

𝜁 = | |𝒄′T𝒒 − 𝒄A | |2

= 𝒓𝐻𝒄A − 𝒄𝐻A 𝒄′T𝒒 − 𝒒𝐻𝒄
′𝐻
T 𝒓 + 𝒒𝐻𝒄′𝐻T 𝒄′T𝒒,

(B.17)

and by nulling the derivative with respect to 𝑞, the solution of the minimization problem (B.16) is

𝒒★ = 𝒄
′𝐻
T (𝒄

′
T𝒄
′𝐻
T )
−1𝒄A. (B.18)

B.4.2 Indistinguishability Conditions

When 𝜁 = 0, the Alice-Bob channel is indistinguishable from the Trudy-Bob channel, and Bob cannot detect
an attack. Let us investigate which are the conditions under which this may occur. Clearly, when Trudy is in
the same position as Alice, they have the same channel to Bob. The interesting point here is to understand if
there are other positions of Trudy that (together with some optimum precoding vector 𝒒) provide the same
indistinguishability condition. Such positions may exist, since Bob estimates only the cascade channel from
Alice, and signals transmitted by Trudy pass through the same RIS used by Alice. From (B.16), we note that
indistinguishability is achieved when the system of complex linear equations

𝒄′T𝒒 = 𝒄A (B.19)

is solvable. However, determining the general conditions on the Trudy-RIS channel that ensure the solution
is challenging. Therefore, in the following, we focus on the special case in which Trudy also has a single
transmit antenna, for which a theoretical analysis is feasible.

B.4.3 Indistinguishability Conditions for 𝑁T = 1

Let us focus on the case in which Trudy has a single antenna and both Alice-RIS and Trudy-RIS channels
have 𝐿 paths. Thus (B.15) becomes

𝒄T = 𝑬𝑀 (𝜽𝐺)𝚪𝐺𝑬𝐻𝑁 (𝝓𝐺)𝛀𝑬𝑁 (𝜽𝑡 )𝚪𝑡1𝐿𝑞 , (B.20)

and the precoding vector boils down to the scalar 𝑞.
To understand the conditions for indistinguishability in this case, let us define 𝑾 = 𝑬𝐻

𝑀
(𝜽𝐺)𝑬𝑀 (𝜽𝐺) ∈

C𝐿𝐺×𝐿𝐺 as the matrix with entry [𝑾]𝑖𝑖 = 𝑀 and

[𝑾]𝑖 𝑗 =
𝑀∑︁
𝑚=1

𝑒− 𝑗 (𝑚−1)𝜅 (sin 𝜃𝐺,𝑖−sin 𝜃𝐺, 𝑗 ) , for 𝑖 ≠ 𝑗 (B.21)
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𝒛𝐴 as a 𝐿𝐺-size vector with entry 𝑙1 = 1, . . . , 𝐿𝐺

[𝒛𝐴]𝑙1 =
𝐿 𝑓∑︁
𝑙2=1

𝛾 𝑓 ,𝑙2

𝑁∑︁
𝑛=1

𝑒− 𝑗 [𝜅 (𝑛−1)𝜇𝐴,𝑙1𝑙2+𝜑̄𝑛 ] , (B.22)

for 𝜇𝐴,𝑙1𝑙2 = (sin 𝜙𝐺,𝑙1 − sin 𝜃 𝑓 ,𝑙2), and 𝒛𝑇 as a 𝐿𝐺-size vector with entry

[𝒛𝑇 ]𝑙1 =
𝐿𝑡∑︁
𝑙2=1

𝛾𝑡 ,𝑙2

𝑁∑︁
𝑛=1

𝑒− 𝑗 [𝜅 (𝑛−1)𝜇𝑇,𝑙1𝑙2+𝜑̄𝑛 ] , (B.23)

for 𝜇𝑇,𝑙1𝑙2 = sin 𝜙𝐺,𝑙1 − sin 𝜃𝑡 ,𝑙2 . We also have

𝒄𝐻A 𝒄A = 𝒛𝐻𝐴𝚪
𝐻
𝐺𝑾𝚪𝐺 𝒛𝐴, (B.24)

𝒄
′𝐻
T 𝒄′T = 𝒛𝐻𝑇 𝚪

𝐻
𝐺𝑾𝚪𝐺 𝒛𝑇 , (B.25)

𝒄𝐻A 𝒄′T = 𝒛𝐻𝐴𝚪
𝐻
𝐺𝑾𝚪𝐺 𝒛𝑇 , (B.26)

𝒄
′𝐻
T 𝒄A = 𝒛𝐻𝑇 𝚪

𝐻
𝐺𝑾𝚪𝐺 𝒛𝐴 = (𝒄𝐻A 𝒄′T)

𝐻 . (B.27)

Now, substituting (B.24), (B.25), (B.26), and (B.27) into (B.17), and for 𝑾̃ = 𝚪𝐻
𝐺
𝑾𝚪𝐺 , we have

𝜁 = 𝒛𝐻𝐴 𝑾̃𝒛𝐴 − 𝑞𝒛𝐻𝐴 𝑾̃𝒛𝑇 − 𝑞∗𝒛𝐻𝑇 𝑾̃𝒛𝐴 + 𝑞𝑞∗𝒛𝐻𝑇 𝑾̃𝒛𝑇 . (B.28)

Defining 𝑏=𝒛𝐻
𝐴
𝑾̃𝒛𝐴, 𝑐=𝒛𝐻

𝐴
𝑾̃𝒛𝑇 , and 𝑑=𝒛𝐻

𝑇
𝑾̃𝒛𝑇 , (B.28) becomes

𝜁 = 𝑑 |𝑞 |2 − 𝑐𝑞 − (𝑐𝑞)∗ + 𝑏 . (B.29)

We are now ready to investigate the indistinguishability condition. Replacing 𝑞 = 𝛽𝑒 𝑗 𝛼 in (B.29), such
condition can be written as

𝑑𝛽2 − 2|𝑐 |𝛽 cos(𝛼 + 𝜌) + 𝑏 = 0 , (B.30)

with 𝑐 = |𝑐 |𝑒 𝑗𝜌. We firstly note that (by definition) 𝜁 ≥ 0 and it is minimized for 𝛼★ = −𝜌. Substituting 𝛼★
in (B.30), we have 𝑑𝛽2 − 2|𝑐 |𝛽 + 𝑏 = 0, which has solutions only if |𝑐 |2 − 𝑏𝑑 ≥ 0, or, equivalently, if

|𝒛𝐻𝐴 𝑾̃𝒛𝑇 |2 ≥ (𝒛𝐻𝐴 𝑾̃𝒛𝐴) (𝒛𝐻𝑇 𝑾̃𝒛𝑇 ). (B.31)

However, by the Cauchy-Schwarz inequality

|𝒛𝐻𝐴 𝑾̃𝒛𝑇 |2 ≤ (𝒛𝐻𝐴 𝑾̃𝒛𝐴) (𝒛𝐻𝑇 𝑾̃𝒛𝑇 ), (B.32)

and thus (B.31) must hold with equality. However, this happens if and only if
√︁
𝑾̃𝒛𝐴 and

√︁
𝑾̃𝒛𝑇 are linearly

dependent. Note that this does not generally imply 𝒛𝐴 and 𝒛𝑇 to be linearly dependent unless 𝑾̃ is a full rank
matrix. By definition, the rank of 𝑾̃ is the same of 𝑾 (due to 𝚪𝐺 being diagonal), which is full rank if and
only if the vectors {𝒆𝑀 (𝜃𝐺,𝑖)}𝐿𝐺𝑖=1 (i.e., the columns of 𝑬𝑀 (𝜽𝐺)) are linearly independent. This condition is
satisfied when 𝐿𝐺 ≤ 𝑀 and the angles 𝜃𝐺,𝑖 related to the different paths are distinct, i.e., sin 𝜃𝐺,𝑖 ≠ sin 𝜃𝐺, 𝑗 ,
∀𝑖, 𝑗 = 1, . . . , 𝐿𝐺 , with 𝑖 ≠ 𝑗 . Since each entry of 𝑾 is given by the inner product of array response vectors
(B.21), which depend only on sin(·) and are periodic over 𝜋 for ULAs with half-wavelength spacing, we
must have

𝜃𝐺,𝑖 ≠ 𝜃𝐺, 𝑗 + 𝑢 𝜋, (B.33)

for any integer 𝑢. Since we assume Bob has a field of view of 2
3𝜋, we are also ensuring 𝑾 to be full rank

when 𝐿𝐺 ≤ 𝑀 . In this case, it can be stated that (B.31) holds with equality if and only if 𝒛𝐴 and 𝒛𝑇 are
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linearly dependent. From the definitions in (B.22) and (B.23), we conclude that the indistinguishability
conditions require that Alice and Trudy have the same number of paths (𝐿𝑡 = 𝐿 𝑓 ), the AoA angles at the
RIS corresponding to Alice and Trudy match exactly, yielding

sin 𝜃 𝑓 ,𝑙 = sin 𝜃𝑡 ,𝑙, 𝑙 = 1, . . . , 𝐿𝑡 = 𝐿 𝑓 , (B.34)

and their path gains are proportional, i.e.,

𝛾 𝑓 ,𝑙 = 𝜆 𝛾𝑡 ,𝑙 , 𝑙 = 1, . . . , 𝐿𝑡 = 𝐿 𝑓 . (B.35)

These are then the indistinguishability conditions for 𝑁T = 1.

B.4.4 Single-Path RIS-Bob Channel

When the RIS–Bob channel is single-path (𝐿𝐺=1), 𝒛𝐴 and 𝒛𝑇 collapse to complex scalars. This dimension-
ality reduction significantly simplifies the attacker’s task, as linear dependence now can be trivially achieved
in C, where any two non-zero scalars are always linearly dependent if one is a scaled version of the other.
Hence, it becomes easier for the attacker to find values of 𝛼 and 𝛽 such that (B.30) is satisfied. Indeed, in this
case, even when Trudy does not show the same angles and path gains of Alice (𝑧𝑇 ≠ 𝑧𝐴), indistinguishability
can still be achieved by appropriately tuning 𝛼 and 𝛽 so that (B.30) holds. In formulas, this happens for

𝛼 = −𝜌 + 𝑢𝜋, 𝑢 even, 𝛼 ∈ [−𝜋, 𝜋], and 𝛽 =
|𝑧𝐴|
|𝑧𝑇 |

(B.36)

or
𝛼 = −𝜌 + 𝑢𝜋, 𝑢 odd, 𝛼 ∈ [−𝜋, 𝜋], and 𝛽 = − |𝑧𝐴||𝑧𝑇 |

. (B.37)

The case 𝐿𝐺=1 inherently poses a higher impersonation risk, as it offers fewer spatial degrees of freedom to
differentiate between Alice and Trudy.
This result could also be directly inferred from the structure of the cascaded channels in (B.14) and (B.20).
Since the common term 𝑬𝑀 (𝜽𝐺)𝚪𝐺𝑬𝐻𝑁 (𝝓𝐺) of the RIS-Bob channel has rank 1, the cascaded channels lie
in the same one-dimensional subspace. Therefore, no matter how different Trudy’s and Alice’s angles and
path gains are, once they pass through it, the result is always confined to a single spatial direction, limiting
Bob’s ability to distinguish between them. In fact, any differences in Alice and Trudy transmissions are
effectively collapsed into a single direction by the rank-one projection of 𝑮 and, then, Trudy can more easily
mimic Alice’s cascaded channel.

B.5 Numerical Results

In this section, we assess the performance of the considered authentication method investigating both single-
path (i.e., 𝐿𝐺 = 1) and multipath (i.e., 𝐿𝐺 = 3) scenarios for the RIS-Bob channel. We consider 𝐿 𝑓 = 𝐿𝑡 = 3
and path gains 𝛾 𝑓 ,𝑙, 𝛾𝐺,𝑙, and 𝛾𝑡 ,𝑙 distributed as CN(0, 1). We assume that the angles at the RIS and the
AoDs from the transmitters are uniformly distributed in

[
− 𝜋2 ,

𝜋
2
]
, while the AoAs at Bob are uniformly

distributed in the range
[
− 𝜋6 ,

𝜋
6
]
. Angles and gains are generated independently for Alice and Trudy. Bob is

equipped with 𝑀 ∈ {4, 8, 16, 32} antennas, while Alice and Trudy are single-antenna devices. The number
of RIS elements is 𝑁 = 64.
Fig. B.2 shows a contour plot of the test function 𝜁 under attack conditions for a single-path RIS-Bob
channel (i.e., 𝐿𝐺 = 1). Note that different angles and path gains for the Trudy-RIS and Alice-RIS channels
are considered. The red cross marks the values of 𝛼 and 𝛽 that minimize 𝜁 : when Trudy chooses the value
of 𝑞★ corresponding to these optimal values of 𝛼 and 𝛽, we have 𝜁 = 0.
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Figure B.2: Contour plot of 𝜁 (under hypothesis H1) for 𝐿𝐺=1, 𝐿 𝑓=𝐿𝑡=3, 𝑀=16, 𝑁=64. The red cross
marks the values of 𝛼 and 𝛽 that minimize 𝜁 . We consider different angles and path gains for the Trudy-RIS
and Alice-RIS channels.

Figure B.3: Contour plot of 𝜁 (under hypothesisH1) for 𝐿𝐺=𝐿 𝑓=𝐿𝑡=3, 𝑀=16, 𝑁=64. The red cross marks
the values of 𝛼 and 𝛽 that minimize 𝜁 . We consider different angles and path gains for the Trudy-RIS and
Alice-RIS channels.
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Figure B.4: DET curves for different value of 𝑀 , 𝐿𝐺 ∈ {1, 3}. The crosses mark the points for which
𝑃MD = 𝑃FA.

Similarly, Fig. B.3 shows a contour plot of the test function 𝜁 under attack conditions for 𝐿𝐺 = 3. Comparing
Figs. B.3 and B.2, we observe that, for 𝐿𝐺 > 1, even if Trudy uses the optimal 𝑞★, the resulting minimum of
the test function 𝜁 is strictly greater than zero. This confirms that, unlike the scenario with 𝐿𝐺 = 1, perfect
impersonation becomes impossible to achieve. Indeed, the presence of 𝐿𝐺 paths increases the rank of the
RIS–Bob channel matrix, thereby introducing additional spatial diversity that makes it harder for Trudy to
align her cascade channel with that of Alice by setting the proper 𝑞★.
The result is also confirmed by Fig. B.4, which shows the detection error trade-off (DET) curves for different
values of 𝑀 and 𝐿𝐺 ∈ {1, 3}. The crosses mark the points for which 𝑃MD = 𝑃FA. All the curves show
that reducing 𝑃FA results in an increase in 𝑃MD, and vice versa. It can also be noticed that for 𝐿𝐺 = 1, we
have 𝑃MD = 1 − 𝑃FA, regardless of the number of Bob’s antennas 𝑀 . In fact, in this case, Trudy can always
find an attack strategy that yields to indistinguishability with Alice; thus the probability that Bob decides for
hypothesis H1 (i.e., attack condition) is the same irrespective of who is transmitting. For 𝐿𝐺 > 1, instead,
the optimal attack does not usually lead to indistinguishability (since the AoAs from Trudy and Alice are
independent). Indeed, the DET curves do not start from the top-left corner as is typically the case. This is
due to the statistical nature of the test and imperfections in Trudy’s impersonation of Alice. In fact, when
𝐿𝐺 > 1, the perfect alignment between Trudy’s and Alice’s cascaded channels is not achievable, even if
Trudy uses 𝑞★. Hence, the minimum achievable 𝑃MD is strictly less than 1, emphasizing a significant limit on
the success of the impersonation attack. Hence, we can conclude that a higher 𝐿𝐺 enhances authentication
robustness by limiting the ability of Trudy to fully mimic Alice’s cascaded channel. Moreover, we observe
that, as 𝑀 increases, the DET curves move towards smaller 𝑃MD for a target 𝑃FA. This shows that having
more receive antennas allows for better distinction between Alice and Trudy.

B.6 Conclusions

We analyzed the security of a RIS-assisted PLA scheme in scenarios with no direct link between the
transmitter and the receiver, and multipath propagation conditions of the channels to and from the RIS.
Assuming the worst case scenario of an attacker Trudy having full channel knowledge, we determined her
optimal attack strategy. Then, we examined the conditions under which Bob’s channel estimation may have
the same statistics regardless of whether Alice or Trudy is transmitting, deriving the conditions based on
the AoAs at the RIS for single antenna attacker. Numerical results show that when the RIS–Bob channel is

Dissemination level: Public Page 163/228



Deliverable D5.2
single-path, impersonation is feasible even with mismatched channel parameters. Conversely, increasing the
number of RIS–Bob paths significantly enhances authentication robustness by limiting the attacker’s ability
to mimic the legitimate user.
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Appendix C

Adversarial ML for Channel-based Key
Agreement for 6G Newtorks

To be submitted.
by Mattia Piana, Francesco Ardizzon, and Stefano Tomasin

Abstract: With the increasing use of 5G and B5G, there is a need for mechanisms that guarantee security
features to such protocols, such as confidentiality, integrity, and availability. Such features typically require
that legitimate devices be provided with secret keys. In this paper, we propose a physical layer key generation
(PKG) scheme that takes advantage of the deployment of dense devices in cellular networks to extract keys
from the observation of the near field channel. In particular, the legitimate transmitter and receiver process
the respective near-field channel observation by using two neural network (NN)-based key extractors to
extract a raw key. Drawing inspiration from the lower bound on the secret key capacity, we train the key
extractors to maximize the reciprocity and uniformity, while minimizing the information leakage to the
eavesdropper. Specifically, a custom architecture and loss function have been designed to accomplish these
tasks. The results highlight the benefit of the proposed mechanism with respect to the current state of the art.

C.1 Introduction

With the advent of 6G, more devices are expected to be deployed in the user environment, providing a wide
range of services that go far beyond the scope of providing communications.
However, while new technologies and protocols guarantee better performance in quality of service (QoS),
there is an increased need to also provide more secure and robust services. Additionally, it is worth noting
that most of the communication is typically wireless, thus exposed to any sufficiently close malicious user,
who may access the channel to eavesdrop on the communication or to inject false signals. Examples include
denial of service (DoS), where the attacker aims to disrupt the link between the nodes of the network,
eavesdropping, where they try to disclose the private communication between the legitimate user, and even
impersonation, where the attacker pretends to be a legitimate user to intrude on the network.
Many security mechanisms can be adopted to counter these threats, often based on cryptography, but a
common requirement is that they require the legitimate party to have a common but secret key. This
includes, for instance, symmetric encryption schemes such as advanced encryption standard (AES), where
the key is used to encode and decode the secret message. Thus, all these mechanisms must be coupled with
key management and key distribution systems for secret keys. However, to avoid storing a large dataset of
keys on each device, it is advisable to resort to key generation schemes, where fresh keys are periodically
generated and used for other services.
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We consider a physical layer key generation (PKG) scheme that exploits the dense deployment of devices
in a 5G and B5G scenario, to generate secure keys by processing the transmitter and receiver near-field
observations by exploiting the channel reciprocity. With respect to their crypto-based counterpart, PKG
schemes are information-theoretic secure, quantum-resistant, and require less computational power [112, Ch.
1]. In particular, legitimate users Alice and Bob use a PKG scheme to obtain a key that must stay secret
from eavesdropper Eve. The protocol involves four steps. First, during channel probing, Alice and Bob
exchange pilot signals over the public channel. Next, during the advantage distillation (AD), Alice and Bob
independently process the observation to obtain a raw key. Next, during the information reconciliation, Alice
and Bob communicate over the public channel to perform error correction between the raw keys. Finally,
during privacy amplification, Alice and Bob reduce the information common to Eve, typically by using hash
functions. More details about PKG can be found in [112, Ch. 4]. Here, we will focus on the first steps, in
particular, the AD.
Recently, several strategies for PKG have been proposed. In the context of 5G, an attention-based convolu-
tional autoencoder (AE) was proposed in [113], where the encoder processes the channel impulse response
(CIR), where Eve’s channel is statistically independent of Alice and Bob, and the Alice-Bob channel is
reciprocal.
Specifically concerning the near field, in [114], the authors propose a design of the precoders to maximize the
secret key rate (SKR). In particular, the precoders are optimized to inject randomness while adding artificial
noise to the channel orthogonal to the legitimate transmission, thus limiting the information leakage to the
eavesdropper.
In [115], an advantage distillation protocol for underwater acoustic channel (UWAC) was proposed, where the
raw key extractor was an neural network (NN) trained to maximize randomness and Alice’s and Bob’s raw bit
sequence reciprocity, while minimizing the leakage to Eve. However, this approach assumes the legitimate
channels to be symmetrical, which is not true in general, e.g., due to hardware receiver non-idealities.
Specifically, regarding the near-field, the authors of [116] propose a mechanism that uses a random precoder
to induce artificial randomness, thus increasing the entropy from which the user extracts the secret keys,
therefore countering the possibly low-entropy static channel.
In this work, we propose a novel strategy for the design of the quantizers used by Alice and Bob in the
advantage distillation step of the PKG procedure, used to extract raw keys from the measurements obtained
from a near-field channel. This strategy is based on an adversarial learning procedure, where Alice’s and
Bob’s quantizers are jointly trained to output bit sequences that achieve high reciprocity and uniformity.
The rest of the work is organized as follows. Section C.2 details the system model. Section C.3 describes
the proposed protocol. Numerical results are presented and discussed in Section C.4. Section C.5 draws the
conclusions.

C.2 System Model

User Alice is connected via an UWAC to user Bob. Alice and Bob wish to exploit the UWAC for PKG as a
source of randomness to extract a common key, i.e., a binary sequence of length 𝑏 so that Alice’s and Bob’s
keys should coincide while being secret to any eavesdropper observing the channel, Eve. We assume Eve to
be a passive device, thus not transmitting signals over the channel.
The first step of the secret key agreement (SKA) procedure, channel probing, involves Alice and Bob
transmitting signals with public pilot symbols via UWAC. From such an exchange, each user measures via
channel estimation a CIR, from which a set of channel features is extracted. In particular, we call 𝒙A, 𝒙B,
and 𝒙E the feature observations obtained by Alice, Bob, and Eve, Drawing from previous works, e.g., [117],
we consider as features: the number of channel taps, the average tap power, the relative root mean square
(RMS) delay, and the smoothed received power. These features have been shown be strongly characterize the
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transmitter and receiver relative position for the UWAC context [64], thus are well suited for the considered
application. Still, the proposed strategy may be extended to consider a broader set of features, e.g., see [118],
at the cost of a higher complexity. Thus, in our case, 𝒙A = [𝑥A,1, . . . , 𝑥A,𝐾 ], 𝒙B = [𝑥B,1, . . . , 𝑥B,𝐾 ], and
𝒙E = [𝑥E,1, . . . , 𝑥E,𝐾 ] ∈ R𝐾 .
We assume the presence of a publicly available dataset. This will be exploited by Alice and Bob to train the
NNs used for the raw key extraction. Being this dataset public, it is also available to Eve. Thus, while it
cannot be used to compute the actual sequences, it can be used for training purposes, assuming that, in turn,
Eve will exploit the very same dataset to train her own extractor. In details, we consider a training dataset
X = {𝒙}, where each entry is a triplet collecting Alice, Bob, and Eve observations, as 𝒙 = (𝒙A, 𝒙B, 𝒙E).

C.3 Proposed Strategy

Our aim is to design Alice’s and Bob’s raw key extractor functions, i.e., the function that extracts the bit
sequences

𝒚A = 𝑓A(𝒙A), 𝒚B = 𝑓B(𝒙B) , (C.1)

where 𝒙A and 𝒙B are the feature vector extracted from the CIR obtained after channel probing. The extracted
sequences 𝒚A ∈ {0, 1}𝑏 and 𝒚B ∈ {0, 1}𝑏 must have good agreement, be highly correlated, and must be
random but secret to Eve. In turn the eavesdropper extracts the sequence as 𝒚E = 𝑓E(𝒙E).
To evaluate the performance of the extracted raw key sequences via PKG, i.e., the amount of useful information
for the PKG, we employ a lower bound on the secret key capacity,

𝐶low
sk = 𝐼 (𝒚A; 𝒚B) −max {𝐼 (𝒚A; 𝒚E), 𝐼 (𝒚B; 𝒚E)} , (C.2)

where 𝐼 (𝒚1; 𝒚2) is the mutual information between sequences 𝒚1 and 𝒚2, i.e.,

𝐼 (𝒚A; 𝒚B) = 𝐻 (𝒚A) + 𝐻 (𝒚B) − 𝐻 (𝒚A, 𝒚B) , (C.3)

while 𝐻 (·) and 𝐻 (·, ·) are the entropy and the joint entropy of the extracted sequences, respectively.
Interestingly, as previously pointed out also in [115], the definitions (C.2) and (C.3) provide several insights
that can be used to design the key extractor. First, (C.3) hints that the entropies of each sequence, in particular
𝐻 (𝒚A) and 𝐻 (𝒚B), should be high. This is achieved when both sequences are random, with the maximum
entropy achieved when 𝑦 ∼ U({0, 1}𝑏). We call this property randomness. Additionally, (C.3) also requires
that the joint entropy 𝐻 (𝒚A, 𝒚B) to be low, which is achieved when the two sequences are one a deterministic
function of the other. We call this reciprocity. Finally, the last term in (C.2) deals with the information
obtained by Eve about Alice or Bob. We refer to this as information leakage.
These requirements will be taken into account to design both the architectures and the loss function of the
proposed NN-based raw key extractors, described in detail in the next sections.
In particular, we consider a training phase during which Alice and Bob jointly train the NNs-based raw
key extractors. Next, during the exploitation or inference phase and after channel probing, Alice and Bob
use their own NN paired with a uniform quantizer with the desired number of levels to extract the raw key
sequences 𝒃𝐴 and 𝒃𝐵. Such keys will be the input of the information reconciliation and then, the privacy
amplification.
The loss function 𝐿 (·) will have three components, which models randomness, the reciprocity, and infor-
mation leakage. More in detail, given the training dataset X, where each entry is 𝒙 = (𝒙A, 𝒙B, 𝒙E), and the
weights collection 𝜽 = (𝜃A, 𝜃B, 𝜃E, 𝜃dec, 𝜃dis), the raw key extractor will be trained to minimize loss.

L(𝒙; 𝜽) = 𝛼L1(𝒙A,𝒙B; 𝜃A) + (1 − 𝛼)L2(𝒙A; 𝜃A) − 𝛽L3(𝒙A, 𝒙E; 𝜃A) , (C.4)

where 𝛼 and 𝛽 are user-defined parameters, weighting each loss component. In the next, we describe in
detail each term and its rationale.
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L1(·)

L2(·)

𝑡

𝑡

𝐷 (𝒔; 𝜽dis)

Figure C.1: Training architecture of the raw key extraction functions, 𝑓 (𝑥; 𝜃𝐴) and 𝑓 (𝑥; 𝜃𝐵), where each
subsequent block is paired to respective loss.

𝑥A 𝑠A

𝑓A(·) 𝑄

𝑏A

𝑓B(·)

𝑥B 𝑠B

𝑄
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Figure C.2: Raw key extraction exploitation for Alice and Bob, where the raw key extractors are paired with
a uniform quantizer, 𝑄.
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C.3.1 Reciprocity Enhancement

The first loss term, L1(·), concerns the reciprocity enhancement. Our goal is to have a raw key extractor
function that retains the correlation between Alice’s and Bob’s feature vectors and thus to extract the matching
information between Alice and Bob. Thus, we define

L1(𝒙A, 𝒙B; 𝜃A) = ∥ 𝑓 (𝒙A; 𝜃A) − 𝑓 (𝒙B; 𝜃B))∥2 . (C.5)

C.3.2 Randomness

The aim of the second loss term, L2(·), is to force the raw key extractor output, 𝒔A (or 𝒔B), to be uniformly
distributed. Without loss of generality, we will consider the space as dominion [−1, 1]𝑀 . We remark that,
during the training, the output is a vector of 𝑀 scalar values.
As discussed in [115], this also means that the raw key extrators should be indistinguishable from the output
of a random source drawing sequences from 𝒔u ∼ U([−1, 1]𝑀 ). In order to do so, we introduce a third NN,
the discriminator, modeled by the function 𝐷 (𝒔, 𝜃dis), that is a binary classifier must distinguishing the key
extractor outputs 𝒔A from the target distribution samples 𝒔u.
Formally, let us introduce the binary tag 𝑡, such that, for the generic discriminator input 𝒔 with output 𝑡, it
holds

𝑡 =

{
0 if 𝒔 = 𝒔

1 if 𝒔 = 𝒔u
, 𝑡 =

{
0 if ℎ(𝒔, 𝜃dis) ≥ 𝜆
1 if ℎ(𝒔, 𝜃dis) < 𝜆

, (C.6)

where 𝜆 is a user-defined parameter, tuned to match the desired false alarm probability, i.e., the probability
𝑃(𝑡 = 1|𝑡 = 0).
The discriminator is a binary classifier with the cross-entropy as a loss function

L2(𝒙B; 𝜃B) = 𝑡 log𝐷 (𝒔, 𝜃dis) + (1 − 𝑡) log(1 − 𝐷 (𝒔, 𝜃dis)). (C.7)

C.3.3 Information Leakage

The loss term L3(·) measures the relation between Alice’s and Eve’s extracted bit sequences. Indeed, we
want the key extractor to extract a key as uncorrelated as possible to one of Eve.
Inspired by [119], we consider the loss function

L3(𝒙A, 𝒙E; 𝜃A) = ∥ 𝑓 (𝒙A; 𝜃A) − 𝑓 (𝒙E; 𝜃E)∥2 . (C.8)

Finally, notice that the same process can be repeated by substituting 𝒙B to 𝒙A in (C.9). Still, this is not
necessary, since, thanks to the reciprocity loss L1(·), we have 𝑓 (𝒙A; 𝜃A) ≈ 𝑓 (𝒙B; 𝜃B).

C.4 Numerical Results

In this Section, we report the performance of the proposed raw key extractors. In particular, first we will
detail the used datasets, and next we will report the actual performance.

C.4.1 Dataset

The simulated dataset includes feature vectors of length 𝐾 = 4 and raw key extractors with 𝑀 = 2 channels.
Next, each channel is quantized using a uniform quantizer Q, with 𝐿 = 2𝑏 levels for 𝑏 ∈ {1, 2, 3, 4} bit, in
the interval [0, 1].
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For each parameter choice, we used datasets containing 105 observations. Then, 60% of the sample vectors
were used for training, 15% for validation, and 25% for testing.
More in detail, the Gaussian dataset XG = (𝒙A, 𝒙B, 𝒙E). This dataset may model several scenarios, e.g., the
received signal amplitude at 𝐾 = 4 sufficiently spaced apart antennas in a MIMO system. More in detail,
we consider each agent observation to have been standardized and 𝒙𝑖 ∼ N(0, 𝑰4) with 𝑖 ∈ (A,B,E). On the
other hand, Alice, Bob, and Eve’s observations are statistically correlated. In particular E[𝒙A,𝑘𝒙B,𝑘] = 𝜌AB,
∀𝑘 while E[𝒙A,𝑘𝒙E,𝑘] = E[𝒙B,𝑘𝒙E,𝑘] = 𝜌AE, ∀𝑘 .

C.4.2 NN Architectures

The encoder NN consists of five fully connected layers of sizes 4 − 3 − 3 − 2 − 2, respectively. The inputs
are just clamped to the first layer, which has an identity activation function. The following three layers have
an leaky rectified linear unit (LeakyReLU) activation function, whereas the last one has a linear activation.
The encoder output layer is composed of two neurons, thus it outputs a vector 𝒔A ∈ R2. Then, by using the
uniform quantizer Q, we will draw from each vector composed by 𝑏 bits, with 𝑏 = 2, 4, and 6 bit.
The decoder has an architecture that mirrors the encoder’s: it has five fully connected layers of sizes
2−2−3−3−4, respectively, where the first one has an identity activation as it serves only to clamp and take
data in input, the next three layers are activated with a LeakyReLU, and the last one has a linear activation.
The discriminator NN is composed of four fully-connected layers of sizes 2 − 500 − 500 − 1, respectively.
The first layer has an identity activation function, the two hidden layers are activated with a LeakyReLU
function, while the output layer has a sigmoid activation function.
In the loss function (C.4), after experimental investigation, the factors that weight each loss contribution
were chosen as 𝛼 = 0.1 (fixed), while 𝛽 changed dynamically during training as

𝛽 = 𝛽0

(
1 − 1

1 + exp(−3𝑛ep/𝑁ep)

)
, (C.9)

where 𝛽0 is the initialization value, 𝑁ep is the total number of training epochs, and 𝑛ep is the index of the
current training epoch.
in (C.9), with 𝛽0 = 1.05 and 𝑁ep = 500. The learning rate was fixed to ℓ = 0.02.

C.4.3 Performance Results

Fig. C.3 reports the mutual information achieved by Alice and Bob as a function of 𝜌AB for several values
of quantization bits per channel, 𝑏. As discussed in Section C.3, 𝐼 (𝒔A, 𝒔B) measures both the Alice and Bob
agreement and the randomness of each raw key sequence. As expected for all the considered parameters
values, 𝐼 (𝒔A, 𝒔B) grows with both 𝜌𝐴𝐵 and 𝑏.
Next, Fig. C.4 reports instead the lower bound 𝐶 low

sk as a function of the attacker correlation, for 𝜌AB = 0.8.
This turn, as 𝜌AE, and thus also the information of Eve about the extracted key, grows as the secret key
capacity reduces. On the other hand, again 𝐶 low

sk also grows with 𝑏, but the gains appear to reduce as 𝑏
increases, hinting at the presence of a saturation value.

C.5 Conclusion

This paper proposes a novel strategy for PKG in 5G and B5G, where Alice and Bob train a pair of NN that
acts as a raw key extractor using an input the observations from a near field wireless channel. Next, during
inference and the advantage distillation step of the PKG, the agent will use their own key extractor pair with
a traditional quantizer to extract the binary raw key, which will then be fed to the information reconciliation
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Figure C.3: Mutual information 𝐼 (𝒔A, 𝒔B) obtained from the AWGN dataset, considering extractors with
𝑀 = 2 channels, a uniform quantizer with 𝑏 bits per channel and 𝜌AB = 0.8.
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and privacy amplification blocks. We designed a training procedure where each block and respective loss
match the terms of the (lower bound on the) secret key capacity. In particular, the overall loss is composed
of three terms: the first measures the reciprocity between Alice and Bob extracted sequence, the second the
randomness, and the latter the information leakage to the eavesdropper Eve. Performance results highlight
the effectiveness of the proposed approach considering various values of correlation of both legitimate and
non-legitimate observation.
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Appendix D

Adversarial Attacks on ISAC Systems

To be submitted.
by Mattia Piana and Stefano Tomasin

Abstract:Integrated sensing and communication (ISAC) is expected to be a key enabler for next-generation
networks, posing unprecedented security issues. In this paper, we evaluate the security of ISAC systems
under adversarial maximum likelihood (ML) attacks. In particular, we have Alice and Bob cooperating to
perform bistatic sensing of the environment. As the scatterers are located in different regions, Alice and Bob
can obtain a coarse estimation of the scatterers’ locations by classifying to which area the received signal
belongs. On the other hand, the attacker Trudy aims at disrupting such a procedure by properly designing her
transmitting beamformer to fool Bob, and make him estimate a target region. We evaluate the effectiveness
of the proposed attack via numerical simulations.

D.1 Introduction

Integrated sensing and communication (ISAC) systems emerge as a cornerstone technology for the sixth-
generation era, seamlessly incorporating sensing functionality into wireless networks as a native capability
[120]. The object’s localization capabilities of such a technology are of crucial interest, as the ability to
monitor physical factors is crucial for optimizing the network’s performance, enhancing security, driving
automation, and carrying out other vital tasks [121]. Still, this technology poses unprecedented security and
privacy issues [122]. In the literature, spoofing attacks are of particular interest [123, 124], as the attacker
can perform beamforming and disrupt the sensing phase of ISAC systems, and often maximum likelihood
(ML) strategies are adopted for tackling such issues [125].
In this paper, we have Alice and Bob cooperating to perform bistatic sensing of the environment. In particular,
the scatterers are located in different regions; thus, by determining from which region the received signal
was scattered, we can obtain a coarse estimation of the scatterers’ location. On the other hand, the attacker
Trudy aims at disrupting such a procedure by properly designing her transmitting beamformer to fool Bob,
and make him estimate a target region. In particular, the contributions are as follows:

• We model a realistic ISAC channel, using a geometrical channel model that takes into consideration
the scatterer’s location.

• We train a standard convolutional neural network (CNN) to classify the received signal into the area
where the scatterers are located.

• We design a projected gradient descent (PGD) attack that Trudy can perform to induce her desired
classification area, taking into account the required transmitting power.
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• We numerically evaluate the attack, demonstrating its effectiveness

The paper is organized as follows: in Section D.2 we present the system model, in Section D.3 we perform a
security analysis on the proposed attack, in Section D.4 we present the numerical results of the simulations
and in Section D.5 we draw the main conclusions.

D.2 System Model

In this paper, the objective of Alice and Bob is to attain a coarse estimation of the scatterers’ location using
ML, in a bistatic fashion. On the other hand, Trudy aims at attacking this process by impersonating Alice and
transmitting malicious signals specifically crafted so that the estimated scatterer location is not the true one,
but a target one. In particular, Alice, Bob, and Trudy are multiple input multiple output (MIMO) devices
transmitting signals using uniform linear arrays (ULAs). The transmitter is equipped with 𝑁T antennas and
sends the sensing signal 𝒙 = W𝒔 ∈ C𝑁T×1, where W ∈ C𝑁𝑇×𝑁𝑇 is the precoding matrix at the transmitter
and 𝒔 ∈ C𝑁T×1 is the unit power source signal.
Each cluster of scatterers, of dimension 𝐿, is located in one of 𝑁 possible squared areas 𝑎𝑛, 𝑛 = 1, . . . , 𝑁 ,
which are centered in position 𝒑𝑛 and have side 𝑆, as depicted in Fig. D.1. The receiver Bob, equipped with
𝑁R antennas, thus receive 𝐿 signals due to the scatterers, whose angle of arrivals (AoAs) are contained in
the vector

𝜽𝑛 = [𝜃 (1)𝑛 , . . . , 𝜃
(𝐿)
𝑛 ] (D.1)

while the angle-of-departures (AoDs) from the transmitter to the scatterers are contained in the vector

𝜹𝑛 = [𝛿 (1)𝑛 , . . . , 𝛿
(𝐿)
𝑛 ] . (D.2)

The received signal by Bob at time 𝑚 is then

𝒚 (𝑚) = 𝒁 (𝑚)𝒙 + 𝒘 (𝑚) , (D.3)

where 𝒁 (𝑚) ∈ C𝑁R×𝑁T is the channel matrix. With 𝜷𝐴(𝜃) = 1√
𝐴
[1, 𝑒 𝑗 𝜋 sin 𝜃 , . . . , 𝑒 𝑗 𝜋 (𝐴−1) sin 𝜃 ] ∈ C𝐴×1,

𝐴 = {𝑁R, 𝑁T} the steering vector operator, 𝛼 (𝑚)
𝑙

as the complex channel gain accounting for pathloss and
propagation delay and 𝒘 (𝑚) is the Gaussian noise, we write the channel 𝒁 (𝑚) as

𝒁 (𝑚) =
𝐿∑︁
𝑙=1

𝛼
(𝑚)
𝑙

𝜷R(𝜃 (𝑚,𝑙)𝑛 )𝜷𝑇T (𝛿
(𝑚,𝑙)
𝑛 ) . (D.4)

Note that we can decompose the channel (D.4) as

𝒁 (𝑚) = 𝑯 (𝑚)𝑮 (𝑚) , (D.5)

where 𝑯 (𝑚) ∈ C𝑁𝑅×𝐿 is the channel between the scatterers and Bob at time 𝑚, while 𝑮 (𝑚) ∈ C𝐿×𝑁𝑇 is the
channel between the transmitter and the scatterers. We also define the signal-to-noise ratio (SNR) as

SNR =
Tr(𝒁 (𝑚)𝐻𝒁 (𝑚) )
E(𝒘 (𝑚)𝐻𝒘 (𝑚) )

=
Tr(𝒁 (𝑚)𝐻𝒁 (𝑚) )

𝑁R𝜎
2
𝑤

. (D.6)
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Figure D.1: System Model
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D.2.1 Problem and Dataset Description

To obtain a coarse estimation of the scatterers location, Bob has available a labeled datasetD = {(𝒚 (𝑚) , 𝑎 (𝑚) )}
of 𝑀𝑆 samples, where we recall the index 𝑚 refers to different times instants, so that it has different scatterer
positions. Bob then trains a ML model 𝑓𝒘 to classify the received signal 𝒚 (𝑚) to the corresponding class
𝑎 (𝑚) . After that, Bob obtains the scatterer positions by mapping the estimated class 𝑎̂ (𝑚) = 𝑎𝑛 to the
corresponding area centroid 𝒑𝑛.

D.2.2 CNN Architecture

We employ a lightweight CNN, with three convolutional layers and a single final layer for classification.

D.3 Security Analysis

In this section, we present the attack analysis that the attacker can perform.

D.3.1 Attacker Model

We assume the attacker Trudy has access to the trained model 𝑓𝒘 as well as the channel 𝒁 (𝑚) from her
position to Bob at each time 𝑚.

D.3.2 Attack Strategy

To break the localization procedure, Trudy exploits her knowledge of the model 𝑓𝒘 and the channel between
her location and Bob 𝒁 (𝑚) to perform a targeted PGD attack [126], and craft a channel 𝒁̃ = 𝒁𝑾 via the
beamforming matrix 𝑾 to reliably induce a target class 𝑎̃𝑛 when the true class is 𝑎𝑛. Still, due to hardware
limitations, we assume a power constraint of 𝑃max on the beamforming matrix, i.e., ∥𝑾∥𝐹≤ 𝑃max, where
∥·∥𝐹 is the Frobenius norm. In detail, the attack procedure works as follows:

1. Select a source and target class, namely 𝑎𝑛 and 𝑎̃𝑛 respectively

2. Select a maximum perturbation 𝜖 on her channel 𝒁 (𝑚) , such that

∥ 𝒁̃ − 𝒁 (𝑚) ∥≤ 𝜖 (D.7)

3. Perform a PGD and find the target channel 𝒁̃

4. Find the optimal beamformer 𝑾★ by projecting the target channel 𝒁̃ onto the feasible solutions, taking
into consideration the power constraint 𝑃max. In detail, the optimization problem for Trudy is:

𝑾★ = arg min
𝑾

∥ 𝒁̃ − 𝒁 (𝑚)𝑾∥

s.t. ∥𝑾∥𝐹≤ 𝑃max.
(D.8)

D.4 Numerical Results

We simulated the scenario in Fig. D.1, where there are 𝑁 = 5 squared areas with size 𝑆 = 30 m. We used a
number of antennas of 𝑁𝑇 = 𝑁𝑅 = 4, a maximum transmitter power by Trudy of 𝑃max = 40 dB. The target
area for Trudy is the region 𝑎̃𝑛 = 2, when the true region is 𝑎𝑛 = 1.
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Figure D.2: Attack Success Rate as a function of the transmitted power, for different numbers of scatterers
𝐿.

D.4.1 Attack Success Rate VS Number of Scatterers

We see from Fig. D.2 that by increasing the transmitted power 𝑃T, Trudy can perform more effective attacks,
reaching an attack success rate, i.e., an accuracy on the target class, of ≥ 80% when the number of scatterers
𝐿 ≥ 4. We also notice that the performance is extremely dependent on the number of scatterers 𝐿: in fact,
the greater 𝐿, the easier it is for Trudy to find a beamforming matrix 𝑾 to fool Bob. This effect relies on the
rank of the cascaded channel 𝒁 (𝑚) : in fact from (D.4), if 𝐿 ≥ 𝑁𝑅, 𝑁𝑇 then 𝒁 (𝑚) becomes invertible, thus
it easier for the attacker to solve (D.8). This effect is particularly evident with 𝐿 = 2: in that case 𝒁 (𝑚) has
at most two non-zero eigenvalues, thus the optimal beamformer saturates at 𝑃max = 40 dB. Note also that
in that case, multiple solutions are available to the attacker: for each maximum perturbation 𝜖 in (D.7), the
attacker can find the beamformer that respects the power constraint. Another solution would be to modify
the PGD algorithm by directly taking into account the power constraint into the solution 𝒁̃, and this is left
for future works.

D.4.2 Attack Success Rate VS SNR

In Fig. D.3, we observe that as the SNR increases, the required power for Trudy decreases, yet the results
remain very similar. This effect can be justified by the fact that when the channels in input to the PGD are
less noisy, it is easier for the algorithm to find suitable channels to fool Bob’s model.

D.5 Conclusion

In this paper, we applied tools of adversarial ML to disrupt the localization procedure common in ML based
ISAC systems. In particular, the attacker Trudy, by performing a PGD attack on the model trained for
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Figure D.3: Attack Success Rate as a function of the transmitted power, for different numbers SNR levels.

scatterers’ localization, can effectively design her beamformer to break the localization procedure, achieving
a success rate of ≥ 80% with ∼ 36 dB of transmitted power.
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Appendix E

Bounds on the information leakage of short
packet wiretap codes

(V. Bioglio, L. Luzzi, paper in preparation, to be submitted to ISIT 2026.)

E.1 Background and motivation

Wiretap coding techniques allow to transmit confidential information without the use of secret keys in the
presence of passive adversaries at rates up to the secrecy capacity, as long as an asymmetry in the channel
quality between the legitimate receiver and the adversary can be guaranteed.
In the asymptotic setting where the blocklength tends to infinity, secrecy capacity achieving coding schemes
have been developed, notably by employing polar codes [127], which are an attractive solution since they are
already part of the 5G New Radio standard.
However, for practical applications requiring short packets or low latency, it is important to obtain non-
asymptotic bounds for the secrecy rate of wiretap codes in finite blocklength.

E.2 Proposed methodology

Building on the theoretical breakthrough by Polyanskiy, Poor and Verdù in the analysis of finite-length
channel coding rates [128], Yang, Schaefer and Poor [58] proved tight bounds on the optimal second-
order coding rate over discrete memoryless channels (DMCs) and Gaussian wiretap channels. In [58], the
information leakage is measured in terms of the total variation distance (TVD) between the joint distribution
of the secret message M and the eavesdropper’s observation Z𝑛, and an ideal distribution in which M is
uniformly distributed and independent of Z𝑛:

𝑆(M|Z𝑛) = V(𝑝MZ𝑛 , 𝑝M𝑝Z𝑛). (E.1)

We consider the physically degraded wiretap channel depicted in Figure E.1. We assume that Bob’s channel
𝑊𝑏 : X → Y of transition probabilities 𝑝Y |X and Eve’s channel 𝑊𝑒 : X → Z of transition probabilities
𝑝Z |X are both symmetric. Furthermore, we assume that both channels are binary-input, i.e. X = {0, 1}.
For this model, the secrecy capacity (in bits per channel use) is given by the differences of the capacities of
Bob and Eve’s channels: 𝐶𝑠 = 𝐶𝑏 − 𝐶𝑒. In finite blocklength, [58, Theorem 13] showed that for 𝜖 + 𝛿 < 1,
the maximal secrecy rate 𝑅∗(𝑛, 𝜖, 𝛿) for blocklength 𝑛, and average error probability 𝜖 under the secrecy
constraint

𝑆(M|Z𝑛) ≤ 𝛿 (E.2)
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Figure E.1: The degraded wiretap channel.

is upper bounded by

𝑅∗(𝑛, 𝜖, 𝛿) ≤ 𝐶𝑠 −
√︂
𝑉𝑐

𝑛
𝑄−1 (𝜖 + 𝛿) + O

(
log 𝑛
𝑛

)
, (E.3)

where 𝐶𝑠 is the secrecy capacity, 𝑄 denotes the Q-function, and

𝑉𝑐 =
∑︁
𝑥∈X

𝑝∗X (𝑥)
(∑︁
𝑦,𝑧

𝑝ZY |X (𝑧, 𝑦 |𝑥)
(
log

𝑝ZY |X (𝑧, 𝑦 |𝑥)
𝑝Z |X (𝑧 |𝑥)𝑝Y |Z(𝑦 |𝑧)

)2
− D

(
𝑝ZY |X=𝑥 | |𝑝Y |Z𝑝Z |X=𝑥

)2
)
. (E.4)

In the expression above, 𝑝∗X is the uniform distribution, which is the unique distribution that maximizes
I(X; Y |Z) in the degraded symmetric case.
In our previous work [57], we investigated the secrecy performance of wiretap code constructions based
on polar codes in the special case where Bob’s channel is error-free and Eve’s channel is a binary erasure
channel (BEC). We now extend our analysis to more general degraded wiretap channels.

Polar coding scheme We consider the general wiretap polar coding scheme in [127] for blocklength
𝑛 = 2𝑚. The input set J1; 𝑛K is partitioned into three disjoint subsetsA∪R ∪B, where |A| = 𝑘 and |R | = 𝑟 .
Intuitively, B corresponds to the indices of bit-channels that are bad for Bob and for Eve; A to bit-channels
that are good for Bob but bad for Eve; and R to bit-channels that are good for Bob and for Eve.
Given the confidential message M𝑘 ∈ {0, 1}𝑘 , the input U𝑛 of the polar encoder is defined by setting
UB = 0𝑛−𝑘−𝑟 (frozen bits), UA = (U𝑖1 , . . . ,U𝑖𝑘 ) = M𝑘 and UR = V𝑟 a vector of uniformly random bits. We
denote the corresponding polar codeword by X𝑛 = 𝐺𝑛U𝑛, where 𝐺𝑛 is the polarization transform [129].

Bound for the average error probability Recall that Bob’s block error probability under SC decoding
is upper-bounded by the sum of Bhattacharyya parameters of Bob’s bit-channels in G = A ∪ R (i.e. the
bit-channels that are not frozen) [130]:

𝑃𝑒 ≤
∑︁

𝑖∈A∪R
𝑍 (𝑊 (𝑖)

𝑏
) (E.5)

When Bob’s channel𝑊𝑏 is a BEC, the parameters 𝑍 (𝑊 (𝑖)
𝑏
) can be computed recursively [129]. For a general

channel𝑊𝑏, in order to estimate the upper bound (E.5), we will use Tal and Vardy’s algorithm [59, Algorithm
D].

Bounds for the leakage Given a symmetric channel 𝑊 : X → Y with transition probability 𝑝Y |X, let 𝑝X
denote the uniform input distribution over X and 𝑝Y = 𝑝Y |X ◦ 𝑝X the corresponding output distribution. We
define the TVD of the channel𝑊 as

𝑇 (𝑊) = V(𝑝XY, 𝑝X𝑝Y).
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One can show that the following bounds hold for the leakage in total variation distance:

𝑆(M𝑘 |Z𝑛)
(1)
≤ 1

2

∑︁
𝑖∈A∪B

𝑇 (𝑝Z̄𝑛ŪJ1;𝑖−1K∩(A∪B) |Ū𝑖 )
(2)
≤ 1

2

∑︁
𝑖∈A∪B

𝑇 (𝑊 (𝑖)𝑒 ). (E.6)

Computation of Bound 2 Bound 2 in equation (E.6) shows that the average TVD (E.1) of the wiretap code
is upper bounded by the sum of the TVDs of the eavesdropper’s bit-channels𝑊 (𝑖)𝑒 : {0, 1} → Z𝑛 × {0, 1}𝑖−1

corresponding to the positions of the bits 𝑖 ∈ A ∩ B.
When Eve’s channel 𝑊𝑒 is a BEC, these TVDs can be computed recursively, since 𝑇 (𝑊 (𝑖)𝑒 ) = 1 − 𝑍 (𝑊 (𝑖)𝑒 ).
For general channels, there is no closed form expression for the TVDs of the bit-channels𝑊 (𝑖)𝑒 , and their exact
recursive computation is unfeasible since the cardinality of the output alphabet grows exponentially with 𝑖.
For channel coding applications, Tal and Vardy [59] proposed a low-complexity algorithm to approximate
the bit-channels with an upgraded or degraded version of themselves, with output alphabet of cardinality
smaller than a chosen threshold 2𝜇, by performing suitable merge operations on the output symbols. We
use this algorithm in order to evaluate (E.6) for more general channels such as the binary symmetric channel
(BSC) and the binary input additive white Gaussian noise (BI-AWGN) channel.
In particular, we focus on the upgrading merge in order to obtain an upper bound for the TVDs. We
apply [59, Algorithm B] with parameter 2𝜇 to the eavesdropper’s channel𝑊𝑒. Let 𝑊̃ (𝑖)𝑒 be the output of the
upgrading algorithm corresponding to the bit-channel 𝑊 (𝑖)𝑒 , for 𝑖 = 1, . . . , 𝑛. Since 𝑊 (𝑖)𝑒 is degraded with
respect to 𝑊̃ (𝑖)𝑒 , we have 𝑇 (𝑊 (𝑖)𝑒 ) ≤ 𝑇 (𝑊̃ (𝑖)𝑒 ).

Computation of Bound 1 We are able to numerically evaluate Bound (1) in equation (E.6) by Monte-Carlo
simulation only in the case where Eve’s channel𝑊𝑒 is a BEC, similarly to [57].

Wiretap code design We propose a simple algorithm to choose the setsA,R,B in the polar coding scheme
so that 𝑃𝑒 ≤ 𝜖 and 𝑆(M𝑘 |Z𝑛) ≤ 𝛿. First, the Bhattacharyya parameters for Bob’s bit-channels 𝑊 (𝑖)

𝑏
are

estimated and sorted in increasing order; the set G = A ∪R is chosen as the largest possible set information
set of “good bit-channels” (in terms of Bhattacharyya parameters) such that the bound (E.5) on the error
probability is smaller than 𝜖 . Alternatively, a Monte-Carlo bound on the error probability can be used if
𝜖 > 10−7. Subsequently, the TVDs for Eve’s bit-channels𝑊 (𝑖)𝑒 are estimated and stored in increasing order;
the set A is chosen as the largest possible subset of G such that the sum of the TVDs of the bit-channels
𝑊
(𝑖)
𝑒 for 𝑖 ∈ A ∪ B is smaller than 2𝛿 (Bound 2 in (E.6)). Alternatively, if Eve’s channel is a BEC, Bound 1

may be computed by Monte Carlo simulation, as explained previously.

E.3 Experimental results and analysis

Binary Erasure Wiretap Channel Figure E.2 shows the lower bounds on the achievable secrecy rate
(Bounds 1 and 2) for polar codes in the case where 𝑊𝑏 and 𝑊𝑒 are BECs with erasure probabilities when
𝑝𝑏 = 0.05 and 𝑝𝑒 = 0.4, under the average error probability constraint 𝜖 = 0.01 and secrecy constraint
𝛿 = 0.1.

Binary Symmetric Wiretap Channel Figure E.3 shows the lower bound on the achievable secrecy rate
(Bound 2) when both 𝑊𝑏 and 𝑊𝑒 are binary symmetric channels with transition probabilities 𝑝𝑏 = 0.05,
𝑝𝑒 = 0.3 respectively, 𝜖 = 0.01 and 𝛿 = 0.1. The bound is obtained through Tal and Vardy’s upgrading
merge approximation of bit-channels with parameter 𝜇 = 64.
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Figure E.2: Comparison of the lower bounds on the achievable secrecy rate for polar codes with the second-
order approximation secrecy rate in (E.3) over a degraded binary erasure wiretap channel with parameters
𝑝𝑏 = 0.05 and 𝑝𝑒 = 0.4, under the average error probability constraint 𝜖 = 0.01 and secrecy constraint (E.2)
with 𝛿 = 0.1.

Binary-input Gaussian Wiretap Channel Finally, we consider the case where Alice uses Binary Phase
Shift Keying (BPSK) modulation, and Bob and Eve observe the output of an AWGN channel with noise
variance 𝜎2

𝑏
and 𝜎2

𝑒 respectively. We note that the second-order bound (E.3) for the secrecy rate still holds
for this channel, with

𝑉𝑐 =
∑︁
𝑥∈X

1
2

(∬
𝑝ZY |X (𝑧, 𝑦 |𝑥)

(
log

𝑝ZY |X (𝑧, 𝑦 |𝑥)
𝑝Z |X (𝑧 |𝑥)𝑝Y |Z(𝑦 |𝑧)

)2
𝑑𝑦𝑑𝑧 − D

(
𝑝ZY |X=𝑥 | |𝑝Y |Z𝑝Z |X=𝑥

)2
)
. (E.7)

In fact, although [58, Theorem 13] is stated for DMCs, it also holds for channels with finite input and
continuous output, since only the finiteness of the input is required in the proof.
Figure E.4 shows the lower bound on the achievable secrecy rate (Bound 2) for 𝜎2

𝑏
= 0.2, 𝜎2

𝑒 = 2, 𝜖 = 0.01
and 𝛿 = 0.1, obtained through Tal and Vardy’s approximation with parameter 𝜇 = 64.

E.4 Conclusions and limitations

Using the channel approximation algorithm in [59], we are now able to evaluate Bound 2 in (E.6) for general
channels, while evaluating Bound 1 remains an open problem.
Our numerical results confirm the fact that although they asymptotically achieve the secrecy capacity, wiretap
schemes based on polar codes are suboptimal in terms of secrecy rate in finite blocklength. As already noted
in [57], this is due to their suboptimal finite length scaling. The back-off from the secrecy capacity must be
taken into account for practical implementation.
Designing optimal wiretap schemes with low encoding and decoding complexity remains a challenging open
problem.
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Figure E.3: Comparison of the lower bound on the achievable secrecy rate for polar codes over a semideter-
ministic wiretap channel with the second-order approximation secrecy rate in (E.3) over a degraded wiretap
channel when the main channel and eavesdropper’s channel are BSCs with parameters 𝑝𝑏 = 0.05, 𝑝𝑒 = 0.3
under the secrecy constraint (E.2) with 𝛿 = 0.1.
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Figure E.4: Comparison of the lower bound on the achievable secrecy rate for polar codes with the second-
order approximation secrecy rate in (E.3) over a degraded wiretap channel when the main channel and
eavesdropper’s channel are BI-AWGN with variance 𝜎2

𝑏
= 0.2 and 𝜎2

𝑒 = 2 respectively, under the average
error probability constraint 𝜖 = 0.01 and secrecy constraint (E.2) with 𝛿 = 0.1.
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Appendix F

Position-Based Cross-Layer Authentication
For Industrial Communications

Submitted to IEEE International Conference on Communications (ICC 2026).
by Mattia Piana, Ali Hossary, and Stefano Tomasin

Abstract: We consider a robot (Alice) moving in an industrial environment while transmitting messages
to nearby endpoints through fixed access-points (APs). An intruder robot (Trudy) aims at transmitting
malicious messages to the endpoints, impersonating Alice. We aim at detecting Trudy transmissions by
comparing the expected position of the transmitter with two estimates of it obtained from a) the channel state
information (CSI) estimated on the signals received by the APs, and b) the traffic information in the network.
Such estimates are obtained with CNN and support vector regressor (SVR) models along with Kalman filters
to exploit the trajectory evolution. Numerical results obtained using the DICHASSUS dataset confirm the
effectiveness of our proposed solution.

F.1 Introduction

With the dawn of Industry 4.0, artificial intelligence (AI), the Internet of Things (IoT), and robotics are gaining
much interest to improve efficiency, productivity, and quality [131]. In such a context, new information and
communication (ICT) systems are used to support entire supply chains [132], increasing the attack surface to
malicious devices aiming to disrupt the industrial infrastructure, [133]. Authenticating transmitters in such
networks is a crucial task to ensure the integrity of the transmissions. To this end, different strategies can
be adopted, from conventional cryptographic schemes to novel quantum cryptography [134], to lightweight
physical-layer security mechanisms, [135]. Focusing on the latter, the literature offers different strategies
to authenticate transmitters directly at the physical layer (see [30] for an exhaustive survey). Among them,
advancements in ML CSI-based localization techniques can improve authentication performance, [102,103].
Concerning cross-layer solutions, different strategies can be adopted. The first is to design hybrid protocols
that combine physical-layer-based with conventional key-based authentication schemes. In [136], the authors
use physical-layer authentication (PLA) as a prehemptive security mechanism to alleviate the authentication
burden at the core network. A similar philosophy is implemented in vehicular networks, where, after a
prior upper-layer authentication, vehicles are re-authenticated based on position-dependent keys extracted
at the physical layer [137]. The second provides detectors that combine information from both layers. For
instance, [138] combines SNR and packet-error-rate to build an generalized likelihood ratio test (GLRT)-
based authenticator, assuming a Gaussian error on both features. Similarly, [139] exploits the correlation
of routing protocols, physical, and link layer data in a multihop wireless mesh network environment and
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compares the classification performance obtained with support vector machine (SVM), decision trees, and
Bayesian networks. For a survey of cross-layer authentication approaches, see also [140].
In this paper, we design an authentication protocol that fuses information coming from the physical and
upper layers in an industrial network context. Alice is a robot, moving on a factory floor and communicating
to neighboring endpoints via several APs, under the supervision of a maximum a posteriori probability
(MAP), that monitors the physical-layer along with the traffic information. An intruder robot (Trudy) aims
at transmitting malicious messages to the endpoints, impersonating Alice. We aim at detecting Trudy
transmissions by comparing the expected position of the transmitter with two estimates of it obtained by
a) the CSI estimated on the signals received by the APs and b) the traffic information in the network. In
particular, a CNN is trained to estimate the transmitter position from the CSI, while a SVR uses the traffic
information in the network again to infer the robot position. The two predicted positions are then fed into
Kalman filters to refine them with prior estimates of the trajectory, and the refined position estimation is
lastly compared with the expected legitimate one. If the three positions are close enough, the message is
considered authentic; otherwise is rejected as fake.
In comparison with existing literature, the proposed solution has several novel features. Notably, we fuse
information from various layers to create position information, which is then compared using a statistical test.
This provides a better understanding of the detector’s behavior. Furthermore, we exploit the temporal cor-
relation of the information using the well-established Kalman filter. Finally, continuous learning techniques
are adopted to adapt the model to changes in the environment.
The contributions of this work are as follows:

1. The fusion of information coming from different layers passes through a common estimate of the
device position rather than as a mixed input to an ML model.

2. The refinement of the estimated positions by Kalman filters to take into account the temporal evolution.

3. A cross-layer-detector (CLD), a lightweight ML framework constituted either by CNN or a combination
of CNN and SVR, that estimate the transmitter position using CSI and connectivity data, respectively.

4. A continuous learning strategy based on fine-tuning is developed to take into account the scenario
changes.

5. The performance assessment of the proposed solution on both synthetic and real-world data.

The rest of the paper is organized as follows. In Section F.2, we introduce the system model, in Section F.3,
we introduce the proposed ML framework and the attacker model, in Section F.5, we show the performance
of the model, and in Section F.6, we draw the main conclusions.

F.2 System Model

We consider a system where two single-antenna mobile robots, Alice and Trudy, move on a factory floor
over a predefined path at variable speeds. We assume that the trajectory of 𝑇 positions 𝒑𝑡 Alice visits at the
discrete times 𝑡 = 1, . . . , 𝑇 , is known by the network and determined before deployment, depending on the
specific task to be carried out. This is a typical scenario in smart factories, where robots travel through the
factory and cooperate with static tools to carry out specific tasks [141].
In her movement, Alice communicates with other endpoints via multiple APs. While the APs are assumed to
be static, the end-points can move. LetK = {𝑘1, . . . , 𝑘𝑁 } be the set of 𝑁 endpoints Alice can communicate
with and A = {𝑎1, . . . , 𝑎𝐿} the set of 𝐿 APs. Each AP 𝑎 is equipped with a variable number of antennas
𝑀𝑎. Let us denote with 𝒛(𝑘) the position of the endpoint 𝑘 ∈ K.
Fig. F.1 shows an example of two trajectories and positions of APs and endpoints.
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Figure F.1: Alice trajectories and APs positions from [142], with 𝑁 = 50 generated endpoints within
𝐷R = 0.5 m from Alice path.
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F.2.1 Traffic Model for Static End-points

At time 𝑡, the possible final destinations of Alice’s messages are the subset of reachable endpoints S( 𝒑𝑡 )
taken from R( 𝒑𝑡 , 𝑅), the set of endpoints located in a circle centered around Alice’s current position 𝒑𝑡 ,
with radius 𝑅. In formulas, the set of reachable endpoints at time 𝑡 is then

S( 𝒑𝑡 ) = {𝑘 : 𝑘 ∈ K , 𝒛(𝑘) ∈ R( 𝒑𝑡 , 𝑅)} . (F.1)

Alice sends packets to the set of active endpoints, which is a subset of 𝜇 ∈ {0, . . . , |𝑆( 𝒑𝑡 ) |} endpoints taken
from 𝑆( 𝒑𝑡 ). Here, we assume that such a subset is obtained by taking uniformly at random the points from
the set of reachable endpoints. Referring to Fig. F.1, the reachable endpoints are the 5 ones within the circle,
but only 𝜇 are active. For example, if 𝜇 = 2 then two endpoints picked at random are active, if 𝜇 = 5 then
all endpoints within the circle are active.

F.2.2 Network Monitoring

We assume the existence of an MAP that monitors the traffic as well as the physical layer information in the
network.

Traffic Monitoring The APs collect informtion about the traffic and sent it to the MAP. In particular,
such information at time 𝑡 is represented by the vector 𝒗𝑡 ∈ [0, 1]𝑁 with binary entries, where each 𝑣𝑛,
𝑛 = 1, . . . , 𝑁 , is 1 if the endpoint 𝑛 is active, and it is 0 otherwise.

Channel Monitoring We assume that transmissions use orthogonal frequency-division multiplexing
(OFDM) signals, constituted by 𝑁S subcarriers over a band 𝐵. Upon the transmission of pilots by a
mobile robot, AP 𝑎 estimates at time 𝑡 the matrix of 𝑀𝑎 × 𝑁S complex baseband equivalent channel gains
for all subcarriers and antennas, obtaining

𝒀 (𝑎)𝑡 = 𝑯 (𝑎)𝑡 +𝑾 (𝑎)𝑡 , (F.2)

where 𝑯 (𝑎)𝑡 ∈ C𝑀𝑎×𝑁S is the channel matrix and 𝑾 (𝑎)𝑡 ∼ CN(0, 𝜎2𝑰) is the thermal noise matrix whose
enties are i.i.d Gaussians with zero mean and variance 𝜎2. The APs then applies a subcarrier averaging
on 𝐶 consecutive subcarriers to reduce the dimensionality of the estimated channels without sacrificing
useful information. The processed CSI matrix is denoted as 𝑯̂ (𝑎)𝑡 , has dimension 𝑀𝑎 × 𝑁S

𝐶
, and represents

compactly the spatial and frequency information.
Along with the channel, each AP 𝑎 keeps track of the SNR at each antenna, which is denoted as 𝛾 (𝑎,𝑖)𝑡 ,
𝑖 = 1, . . . , 𝑀𝑎. The AP then computes the SNR coefficient 𝛾 (𝑎)𝑡 =

∑𝑀𝑎

𝑖=1 𝛾
(𝑎,𝑖)
𝑡 . At each time 𝑡, the processed

CSI matrix 𝑯̂ (𝑎)𝑡 and the SNR coefficient 𝛾 (𝑎)𝑡 are transmitted to the MAP.

F.2.3 Attacker Model

Another robot, Trudy, acts as an intruder into the considered system. Her purpose is to transmit messages
to the endpoints that are confused as coming from Alice. We assume that Trudy can follow the same Alice
trajectory, and she knows Alice’s current position.

F.3 Cross-layer Anomaly Detection for Static End-points

Our target is to detect Trudy transmissions by identifying anomalies in the network. To this end, we propose
an anomaly detection system that exploits the knowledge of the network conditions both at the physical and
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Figure F.2: Cross-layer authentication solution.

upper layers. We frame this task as a one-class classification problem, in which, given features belonging
to class H , we have to decide whether they are legitimate, i.e., H = H0: Alice is transmitting, or not, i.e.,
H = H1: the transmitter is Trudy. Note that one-class classification problems are particularly challenging
as they do not use attacker samples in the training, thus they are robust to multiple attacks.
First, we describe such features that are used to detect anomalies, and then we detail the proposed solution.
Lastly, we discuss possible attacks by Trudy against the designed solution.

Detection Features The features that our framework uses to detect anomalies are time series data, where
at each discrete time 𝑡, the available features are: the traffic vector 𝒗𝑡 , the SNR coefficient of each AP 𝛾 (𝑎)𝑡 ,
and the CSI information 𝑯̂ (𝑎)𝑡 from each AP. This information is then processed either directly at the APs
or at the MAP, as explained in the following. Since the active endpoints belong to the reachable set S( 𝒑𝑡 )
defined by (F.1), the traffic patterns 𝒗𝑡 implicitly encode spatial information. On the other hand, the CSI is
affected by local reflection and scattering phenomena, which also carry information on the location of the
transmitter.

Detection Mechanism Our detection mechanism is composed of different steps shown in Fig. F.2, and
here outlined:

1. Channel Estimation and Processing: in this phase, each AP estimates the channel and processes it as
explained in Section F.2.2.

2. Coarse Position Estimation: each AP 𝑎 obtains estimate 𝒑̂ (𝑎)𝑡 of the transmitter position from the
estimated CSI 𝑯̂ (𝑎)𝑡 , using a CNN.

3. Local Information Forwarding: each AP 𝑎 forwards to the MAP the received message, the estimated
position 𝒑̂ (𝑎)𝑡 , and the SNR coefficient 𝛾 (𝑎)𝑡 .

4. Fine Position Estimation: the MAP performs a weighted average of the positions estimated by all the
APs. The weights are the SNR coefficients. Thus, defining 𝛾tot =

∑
𝑎∈A 𝛾

(𝑎)
𝑡 , the estimated position

at the physical layer is
𝒑̂ph,𝑡 =

1
𝛾tot

∑︁
𝑎∈A

𝛾
(𝑎)
𝑡 𝒑̂ (𝑎)𝑡 . (F.3)

5. Traffic-based Position Estimation The MAP also obtain estimate 𝒑̂up,𝑡 of the transmitter position using
upper-layer data, i.e., the binary vectors 𝒗𝑡 , via SVR, the ML model that predicts the position from the
traffic data.
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6. Time Interpolation and Classification: the predicted positions 𝒑̂ph,𝑡 and 𝒑̂up,𝑡 are generally correlated

in time. We can capture such a correlation by applying a Kalman filter to the estimated positions and
obtain the final estimates 𝒒ph,𝑡 and 𝒒up,𝑡 . With 𝒑𝑡 being the expected position of Alice,

𝑒ph = ∥𝒒ph,𝑡 − 𝒑𝑡 ∥ and 𝑒up = ∥𝒒up,𝑡 − 𝒑𝑡 ∥ (F.4)

the two prediction errors, then the predicted class Ĥ is

Ĥ =

{
H0 if 𝑒ph ≤ 𝜙 ∧ 𝑒up ≤ 𝜙,
H1, otherwise.

(F.5)

In other words, both predictions from the physical and the upper layer should stay at a maximum
distance 𝜙 from the legitimate one in normal conditions.

We employ two different components to estimate the position from the physical-layer and upper-layer features
for efficiency, complexity, and robustness. Indeed, each AP shares with the MAP only the local predicted
position rather than the whole measured CSI (two real numbers against 𝑀𝑎 × 𝑁S

𝐶
× 2), thus improving the

efficiency. Moreover, reducing the input dimensionality requires a less complex system, with less data and
training time, thus reducing the complexity. Lastly, a fully centralized solution would have created a single
point of failure at the MAP. In the proposed solution, instead, the APs can predict the transmitter position
(with lower precision) from the CSI data, even in the case of MAP failure, thus they would still be able to
detect anomalies. This makes the system more robust.
In the next Section, we explain the architectures of the two models, namely CNN and SVR, as well as the
Kalman filter design.

F.3.1 Mechanisms Components’ Design

We now provide the details for the design of the various components of the proposed authentication solution.

CNN We first recall that each AP employs a CNN to predict the transmitter position starting from CSI data.
We consider CNNs as they are a good fit for this task [143,144]. Indeed, we can interpret the estimated CSI
𝑯̂ (𝑎)𝑡 as an image with two channels (real and imaginary part) and of dimension 𝑀𝑎 × 𝑁S

𝐶
. The proposed

CNN comprises a feature extraction module (i.e., a sequence of convolutional layers and pooling operations)
to extract important features for the task, and a fully connected module. The details of the architecture are
summarized in Table F.1. The model is tailored to exploit both the spatial and frequency-domain structures
present in the CSI tensor.

SVR The MAP employs SVR to estimate Alice’s position 𝒑̂up,𝑡 ∈ R2 from the observed traffic patterns
𝒗𝑡 ∈ {0, 1}𝑁 at time 𝑡. SVR extends the support vector machine paradigm to continuous-valued function
approximation [145]. In particular, given 𝑁sp labeled training samples D = {(𝒗𝑡 , 𝒑𝑡 )}

𝑁sp
𝑡=1 , we decompose

the two-dimensional problem into two independent scalar regression tasks, performed by models 𝑓w𝑥
and

𝑓w𝑦
: R𝑁 → R. Each model minimizes the 𝜖-insensitive loss function to solve the problem

min
w,𝑏

1
2
∥w∥2 + 𝐶reg

𝑁sp∑︁
𝑡=1

max(0, ∥ 𝑓 (𝒗𝑡 ) − 𝒑𝑡 ∥−𝜖) , (F.6)

where 𝑓 (𝒗𝑡 ) = w𝑇𝒗𝑡+𝑏 and w = w𝑥 or w𝑦 , depending on whether we are using 𝑥 or 𝑦 coordinate, respectively.
The coefficient 𝐶reg controls the regularization strength, and 𝜖 defines the loss tolerance margin. To capture
the non-linear relation between traffic and position vectors, we used the radial basis kernels (RBFs) and
solved the kernel/dual form of (F.6). We refer to [145, Chp. 6] for more details.
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Table F.1: CNN Specifications.

Layer Parameters

Input Input channels: 2 (real, imaginary)

Conv2d + ReLU Output channels: 16, kernel 3 × 3

Conv2d + ReLU Output channels: 32, kernel 3 × 3

MaxPool2d kernel 2 × 2

Conv2d + ReLU Output channels: 64, kernel 3 × 3

MaxPool2d kernel 2 × 2

Flatten –

Fully Connected + ReLU N. neurons: 64

Fully Connected + ReLU N. neurons: 64

Output Layer Output dim.: 2

Kalman Filter As mentioned above, the Kalman filter refines the estimates obtained with the CNN and
SVR to smooth the behavior over time. The state of the system at time 𝑡 is vector 𝒙𝑡 = [𝑝𝑥,𝑡 , 𝑝𝑦,𝑡 , 𝑣𝑥,𝑡 , 𝑣𝑦,𝑡 ]𝑇 ,
which contains the positions and velocities on the x-y axes. The transition matrix is

𝑭 =

©­­­­­­­«

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

ª®®®®®®®¬
, (F.7)

which describes the dynamic of the system linking the state 𝒙𝑡 to the previous one, as

𝒙𝑡 = 𝑭𝒙𝑡−1 + 𝒘 , (F.8)

where 𝒘 ∼ N(0,𝑸) is the model noise vector, representing the uncertainty on the model dynamics. The
measurement is instead 𝒛𝑡 = 𝒑̂𝑡 = [𝑝𝑥,𝑡 , 𝑝𝑦,𝑡 ]𝑇 , which for us is either the CNN or SVR predictions. The
measurement is linked to the state 𝒙𝑡 through the measurement matrix

𝑴 =
©­«
1 0 0 0

0 1 0 0
ª®¬ (F.9)

as
𝒛𝑡 = 𝑴𝒙𝑡−1 + 𝒘′ , (F.10)

where𝒘′ ∼ N(0, 𝑹) is the measurement noise. The Kalman filter is tuned by choosing appropriate covariance
matrices 𝑸 and 𝑹, for instance, choosing tr(𝑹) > tr(𝑸) means we are trusting the model dynamics rather
than the measurements. We refer to [146] for a more complete description of the problem, especially on how
to combine the a priori estimate of the state 𝒙𝑡 with actual measurements 𝒛𝑡 , thus estimating the a posteriori
estimate of the state. The Kalman output is then the a posteriori estimates 𝒒ph,𝑡 and 𝒒up,𝑡 , refined versions
of the CNN and SVR outputs, respectively.
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F.4 Cross-layer Anomaly Detection for Moving End-points

F.4.1 Traffic Model with Mobile Endpoints

At time 𝑡, each endpoint 𝑘 ∈ K is located at position 𝒛𝑡 (𝑘) ∈ R2. Unlike the previous scenario where end-
points were stationary, we now consider that endpoints can move with velocity bounded by 𝑣max. Specifically,
the position of endpoint 𝑘 evolves according to

𝒛𝑡+Δ𝑡 (𝑘) = 𝒛𝑡 (𝑘) + (𝒗𝑘 + 𝒘𝑘 (𝑡)) · Δ𝑡 , (F.11)

where 𝒗𝑘 = (𝑣𝑥,𝑘 , 𝑣𝑦,𝑘)⊤ ∈ R2 is the mean velocity vector of endpoint 𝑘 , with components independently
drawn from a uniform distribution in [0, 𝑣max] and kept constant throughout the trajectory, and 𝒘𝑘 (𝑡) ∼
N (0, 𝜎2

𝑤 𝑰2) is a zero-mean Gaussian velocity perturbation with variance 𝜎2
𝑤 . This model represents ballistic

motion with stochastic perturbations, where endpoints maintain a roughly constant velocity with small random
deviations. The noise term is scaled by the sampling period Δ𝑡, reflecting uncertainty that accumulates over
the time interval.
The set of reachable endpoints at time 𝑡 is defined as those endpoints whose current positions lie within a
circle of radius 𝑅 centered at Alice’s position 𝒑𝑡 :

S( 𝒑𝑡 , 𝑡) = {𝑘 : 𝑘 ∈ K , ∥𝒛𝑡 (𝑘) − 𝒑𝑡 ∥ ≤ 𝑅} . (F.12)

However, unlike the stationary case, the set S( 𝒑𝑡 , 𝑡) now explicitly depends on time 𝑡 due to endpoint
mobility.
Alice sends packets to the set of active endpoints, which is a subset of 𝜇 ∈ {0, . . . , |S( 𝒑𝑡 , 𝑡) |} endpoints
selected uniformly at random from S( 𝒑𝑡 , 𝑡). The active endpoints represent those currently engaged in
communication with Alice.

Traffic Monitoring The traffic model is analogous to the static case; still, due to endpoint mobility, the
traffic pattern 𝒗𝑡 evolves dynamically as endpoints move in and out of Alice’s communication range, requiring
the positioning system to adapt continuously to maintain accurate localization.

F.4.2 Detection Mechanism for Moving Endpoints

The positioning system employs a multilayer perceptron (MLP) Regressor instead of SVR to predict Alice’s
position from the observed traffic patterns. The network architecture is designed to extract features from
the binary traffic vector and map them to continuous position coordinates. As detailed in Table F.2, the
network consists of three layers. The input layer receives the 𝑁-dimensional binary traffic vector 𝒗𝑡 and
projects it to a 100-dimensional feature space using a fully connected layer with Rectified Linear Unit
(ReLU) activation. The first hidden layer further compresses the representation to 50 dimensions, also with
ReLU activation. Finally, the output layer maps the learned features to a 2-dimensional position estimate
𝒑̂𝑡 = (𝑥𝑡 , 𝑦̂𝑡 ) corresponding to Alice’s predicted coordinates. The output layer uses a linear activation to
allow unrestricted position predictions across the deployment area. All layers employ 𝐿2 regularization
(weight decay) with coefficient 𝜆 = 0.01 to prevent overfitting and improve generalization to unseen traffic
patterns.

Offline Training of the base model The MLP is trained offline using a dataset D = {(𝒗𝑖 , 𝒑𝑖)}𝑀𝑖=1 of 𝑀
traffic-position pairs collected during an initial calibration phase. During this phase, Alice’s position 𝒑𝑖
is known, and the corresponding traffic vector 𝒗𝑖 is recorded. For the fixed endpoint scenario, this dataset
captures the spatial relationship between Alice’s position and the set of reachable endpoints. For the mobile
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Table F.2: MLP Architecture for Position Estimation

Layer Type Input Size Output Size Activation

Input Dense 𝑁 100 ReLU

Hidden 1 Dense 100 50 ReLU

Output Dense 50 2 Linear

endpoint scenario, the dataset includes samples collected over time, capturing the dynamic traffic patterns
induced by endpoint mobility.
Training is performed using the Adam optimizer with an initial learning rate of 𝛼 = 10−3. A learning rate
scheduler (ReduceLROnPlateau) is employed to reduce the learning rate by a factor of 0.5 when the validation
loss plateaus for 20 consecutive epochs. Mini-batch gradient descent is used with batch size 𝐵 = 64, and
training continues for up to 500 epochs with early stopping based on validation loss (patience of 50 epochs).
Input features are standardized to zero mean and unit variance, and output positions are similarly normalized
to facilitate stable optimization.
Upon completion of offline training, the network achieves a mean positioning error of approximately 𝜖base ≈
0.40 m on the test set for the fixed endpoint scenario. However, in the mobile endpoint scenario, the
offline-trained model experiences significant performance degradation due to the distribution shift caused
by endpoint mobility.

On-the-Fly Fine-Tuning for Adaptation To address the performance degradation in the mobile endpoint
scenario, we employ an on the fly fine-tuning strategy that adapts the network to the changing environment
with minimal computational overhead. This approach is crucial for maintaining accurate positioning as
endpoints move and alter the traffic patterns.

Layer Freezing Strategy Rather than updating all network parameters, which would be computationally
expensive and prone to catastrophic forgetting, we adopt a transfer learning approach. Specifically, we freeze
the parameters of the input and hidden layers, treating them as a fixed feature extractor. Only the output
layer parameters 𝑾out and bias 𝒃out are updated during online fine-tuning. This design choice is motivated
by the observation that the lower layers learn general spatial features that remain relevant despite endpoint
mobility, while the output layer must adapt to map these features to the new position-traffic relationship.

Fine-Tuning Procedure When a new measurement is available at time 𝑡 with the corresponding traffic
vector 𝒗𝑡 and ground truth position 𝒑𝑡 , and this measurement is marked as legitimate, the finetuning procedure
takes place. As outlined in Alg. F.3, given the output from the frozen layers 𝜙(𝒗𝑡 ), the model predicts the
position 𝒑̂𝑡 which is used to update the output layer.
The fine-tuning learning rate is set to 𝛽 = 0.01, which is higher than the offline training rate to enable rapid
adaptation. The number of gradient steps per sample is 𝐽 = 2, ensuring a balance between adaptation quality
and computational efficiency. It is important to note that for each sample 𝑡, the positioning error is computed
before fine-tuning on that sample. Specifically, the model predicts 𝒑̂𝑡 using weights learned from samples
1, . . . , 𝑡 − 1, then the error ∥ 𝒑̂𝑡 − 𝒑𝑡 ∥ is recorded. Subsequently, the model is fine-tuned on (𝒗𝑡 , 𝒑𝑡 ), which
improves predictions for future samples 𝑡 + 1, 𝑡 + 2, . . .. This protocol ensures that the evaluation reflects true
online learning performance, where the model must predict before observing the ground truth label.
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Figure F.3: On-the-fly fine-tuning of output layer

1: Extract features: 𝒉𝑡 = 𝜙(𝒗𝑡 ) using frozen layers
2: for 𝑗 = 1 to 𝐽 do
3: Compute prediction: 𝒑̂𝑡 = 𝑾out𝒉𝑡 + 𝒃out
4: Calculate loss: L𝑡 = ∥ 𝒑̂𝑡 − 𝒑𝑡 ∥2
5: Update weights:

𝑾out ← 𝑾out − 𝛽∇𝑾outL𝑡
𝒃out ← 𝒃out − 𝛽∇𝒃outL𝑡

6: end for
where 𝛽 is the fine-tuning learning rate.

F.4.3 Attack Strategies

To attack, Trudy generates upper-layer data and/or transmits data as she was in a position at a distance 𝐷max
with respect to Alice’s position. We consider different attack strategies adopted by Trudy.

• Wrong-Physical-Wrong-Traffic (WPWT): In this attack, Trudy both transmits data and generates traffic
at a distance 𝐷max from the expected one. In other words, neither the traffic nor her signal is compatible
with the expected position.

• Wrong-Physical-Correct-Traffic (WPCT): Trudy generates the correct traffic data with respect to Alice’s
position, but it is transmitted from the wrong position.

• Correct-Physical-Wrong-Traffic (CPWT): Trudy transmits from the legitimate expected position, but
the upper-layer data is anomalous. This attack is interesting because it can break the protocols based
on the CSI only like [102, 103].

F.4.4 Security Analysis

Our framework efficiently combines information from different layers to improve channel-based authenti-
cation [30], which relies solely on physical layer features. While our protocol can be extended to multiple
devices, this increases the complexity of the CNN and SVR models. However, transfer-learning techniques
can be applied to maintain a simple yet effective framework.

F.5 Numerical Results

In this section, we describe the data we used to validate our framework and evaluate the security performance
in terms of false alarm (FA) probability, i.e., the probability that Alice is misled to Trudy

𝑃fa = P(Ĥ = H1 |H = H0) , (F.13)

and the misdetection (MD) probability, i.e., the probability that Trudy is misled to Alice

𝑃md = P(Ĥ = H0 |H = H1) . (F.14)

The FA/MD probabilities against the attacks, as well as the localization performance for different ML
strategies and scenario parameters, are explained in the following subsections.
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Figure F.4: DET curve of CLD against the WPWT (squares), WPCT (triangles) and CPWT (circles) attacks
and at different Trudy distances 𝐷max = 1.5 m (solid-blue line) and 𝐷max = 2 m (dashed-green line).

F.5.1 Dataset Description

To validate the proposed framework, we use experimental data for the physical-layer features and artificial
data for the upper-layer features.

Physical-Layer Data For the physical data, we resorted to the DICHASUS dataset [142], which contains
experimental physical-data features obtained when a movable transmitter (Alice) continuously transmits
OFDM-modulated pilot symbols when moving on a defined closed track in multiple rounds. Each OFDM
symbol comprises 𝑁S = 1024 subcarriers over a bandwidth 𝐵 = 50 MHz at 1.272 GHz. The APs are 𝐿 = 4,
fixed, with arrays of different numbers of antennas, namely 𝑀1 = 8, 𝑀2 = 𝑀3 = 5, and 𝑀4 = 6. The
∼ 2.7 × 104 data points are labeled with the ground-truth positions of the transmitting device 𝒑𝑡 . Fig. F.1
shows the considered scenario, which includes two Alice trajectories as well as APs positions from [142].

Upper-Layer Dataset Concerning the upper-layer data, we randomly generated the positions of 𝑁 end-
points within a distance 𝐷R of Alice’s track. Fig. F.1 shows 𝑁 = 50 randomly generated endpoint positions
within distance 𝐷R = 0.5 m, as well as the coverage area.

F.5.2 Performance With Static End-points

FA/MD Probabilities Against Various Attacks We begin our analysis by showing the behavior of our
framework against the WPWT, WPCT, and CPWT attacks for various Trudy distances 𝐷max. Fig. F.4
shows the detection error tradeoff (DET) of the proposed authentication mechanism, obtained by varying the
decision threshold 𝜙.
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Figure F.5: MD probability as a function of the coverage radius 𝑅 with 𝑃fa = 0.1, for various attack strategies.

We note that, as 𝐷max increases, the system becomes more capable of detecting anomalies, as expected,
since the position recovered from the transmissions becomes more inconsistent with the expected position.
Among the attacks, the least effective is WPWT, as it contains anomalies both at the physical and upper layers.
Comparing the WPCT and CPWT attacks, we notice that their effectiveness depends on the localization
accuracy, which in turn highly depends on the system conditions. In fact, we see in Fig. F.5 that the CPWT
attack is, in general, more sensitive to the coverage radius 𝑅, as increasing the coverage radius too much
reduces the localization accuracy (see Fig. F.6, right), thus Trudy can exploit that.
Lastly, we observe that our framework is also effective against the CPWT attack, which would otherwise
remain undetected in [102] and [103], thus we demonstrate the superiority of our protocol over state-of-the-art
CSI-only based protocols.

Position RMSE We compare four regression approaches for traffic-based localization to find the best model
for our sparse binary input: random forest as a robust ensemble baseline for binary features, XGBoost for its
good handling of sparse data and feature interactions, SVR with RBF kernels for non-parametric non-linear
spatial mapping, and neural networks (NNs) for their universal approximation capabilities. This selection
spans tree-based, kernel-based, and neural paradigms, enabling comprehensive evaluation of which learning
framework best captures the implicit position-traffic relationship encoded in 𝒗𝑡 through the reachable set
S( 𝒑𝑡 ). Fig. F.6 (left) shows the root-mean square error (RMSE) of the position estimation for various
regression models, varying the number of active endpoints 𝜇. The coverage radius is fixed at 𝑅 = 2 m and
the total number of endpoints is 𝑁 = 50. All models consistently improve the localization accuracy as the
number of active endpoints increases, reflecting the enhanced spatial information available. SVR achieves
the best overall performance, closely followed by XGBoost and NN. Notably, the performance gap between
models narrows substantially as the number of endpoints increases.
Fig. F.6 (right) illustrates the impact of the coverage radius 𝑅 and total number of endpoints 𝑁 on SVR
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Figure F.6: RMSE of different regression models vs the number of active endpoints 𝜇 (left) and RMSE of
SVR against the coverage radius 𝑅 and number of endpoints 𝑁 (right).

localization accuracy, with maximum active endpoints fixed at 𝜇max = 5.
Note that, beyond a certain 𝑅, whose value depends on the number of endpoints 𝑁 , the localization error
increases monotonically across all configurations. This is because having too many reachable endpoints
makes the active endpoint information uncorrelated with the actual transmitting position: a radius covering
the whole trajectory makes upper-layer information useless for position estimation. On the other hand,
having a low 𝑅 might lead to insufficient spatial diversity when few endpoints populate the reachable set
S( 𝒑𝑡 ), as for 𝑁 = 30. These findings suggest a sweet spot on the coverage radius extension that needs to be
handled with care.

F.5.3 Performance with Moving Endpoints

Impact of Endpoint Mobility Figure F.7 illustrates the impact of endpoint mobility on positioning ac-
curacy. Without any adaptation mechanism, the positioning error increases nearly linearly with receiver
velocity, reaching approximately 4 meters at 𝑣max = 3 mm/s. This severe performance degradation oc-
curs because the offline-trained model learns a fixed mapping between traffic patterns and positions, which
becomes invalid as receivers move and alter the spatial relationship between Alice’s position and active
endpoints. In contrast, the online fine-tuning strategy maintains consistently low positioning error across all
velocity regimes. Even at the highest velocity of 𝑣max = 3 mm/s, where the non-adaptive model fails with 4
m error, the adaptive model maintains approximately 0.35 m error—comparable to the baseline performance
with stationary receivers.

F.6 Conclusions

In this paper, we introduced CLD, a cross-layer ML framework for detecting anomalies using data obtained
from the physical and upper layers. We demonstrate the superiority of CLD over state-of-the-art detection
protocols based only on physical-layer data. Our framework can effectively detect anomalies with FA/MD
probabilities of about 10−2 when the attacker transmits and generates traffic at a distance of only about 2 m
from the expected one.
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Figure F.7: Impact of receiver mobility on positioning accuracy. The orange curve shows severe perfor-
mance degradation without adaptation, while the green curve demonstrates that online fine-tuning maintains
consistent accuracy across all velocity regimes. Configuration: 𝑁 = 50 receivers, 𝑅 = 2m coverage radius,
5000 test samples.
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Appendix G

Predictive Modeling for RF Fingerprint
Evolution

G.1 Experimental Testbed

The experimental validation for the predictive modeling task is conducted on a custom testbed comprising
30 IoT transmitters and a receiver array. The setup is located in a controlled indoor environment to minimize
external interference while allowing for the observation of hardware-induced drift.
Figure G.1 displays the wide view of the 30-transmitter grid and receiver array. The setup ensures that all
devices are subjected to identical environmental conditions (temperature, humidity) during the long-term
capture.

Figure G.1: Wide view of the RF-PREDICT testbed showing the transmitter grid and receiver array.
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Figure G.2 provides a detailed view of the sensors. Half of these units are powered by batteries to enable
the investigation of spectral drift caused by voltage decay, while the other half utilize stable DC power as a
control group.

Figure G.2: Close-up of the transmitter array showing the mixed deployment of battery-powered and DC-
powered units.

G.2 Data Collection Protocol

To study the “silence decay” phenomenon, transmitters are configured with varying transmission intervals.
Table G.1 details the assignment of intervals to specific Device IDs.

Table G.1: RF-PREDICT: Transmission Intervals and Device Configuration

Device IDs Interval Device IDs Interval Device IDs Interval

T01 - T02 15 Seconds T11 - T12 15 Minutes T21 - T22 6 Hours

T03 - T04 30 Seconds T13 - T14 30 Minutes T23 - T24 8 Hours

T05 - T06 1 Minute T15 - T16 1 Hour T25 - T26 12 Hours

T07 - T08 5 Minutes T17 - T18 2 Hours T27 - T28 18 Hours

T09 - T10 10 Minutes T19 - T20 4 Hours T29 - T30 24 Hours
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G.3 Packet Structure

Each transmission utilizes a custom packet structure designed to capture telemetry data relevant to signal
drift. As shown in Table G.2, fields for temperature and power level are embedded in every frame to allow
for future correlation between spectral changes and physical device state.

Table G.2: Packet Structure for RF-PREDICT Dataset

Packet Feature Length (Bytes) Description

Preamble 4 Network Synchronization

Sync Word 4 Frame Detection

Length 1 Payload Length

Sequence Number 2 Packet tracking

Device ID 4 Unique Transmitter Identifier

RTC Timestamp 4 Real-Time Clock value

Temperature 1 On-chip temperature sensor

Power Level 1 Battery voltage level

CRC 2 Error check

Total 23
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Appendix H

Federated Authentication for 6G Networks

To be submitted.
by Mattia Piana, Stefano Rini, and Stefano Tomasin

Abstract: We study a scenario where several authorized devices (collectively denoted as Alice) are trans-
mitting from several authorized areas. An attacker device, Trudy, is instead impersonating Alice, i.e.,
transmitting messages and claiming to be Alice. However, Trudy does not have access to the areas where
Alice is. Therefore, we propose that multiple base stations (BSs) of a 6G network (collectively indicated
as Bob) determine whether the received signal comes from the authorized areas or not, to authenticate the
received messages, and determine whether they have been transmitted by Alice or not. The BSs collaborate
to authenticate the transmitting device at the physical layer. This problem can also be seen as a problem of a
distributed in-region location verification problem, [101].
For authentication, each AP first trains a local model that, from features extracted from the CSI estimated on
the received message, makes a classification and decides about the origin region of the signal. Due to the
fact that all BSs aim at recognizing the feature of the same areas, which is seen from different viewpoints
from the BSs, the trained models should share some similarities. On the other hand, since each BS is located
in a different position, the statistics of the observed features are not the same, and the classification models
are also different among the APs. To exploit the commonalities and make the learning process fast, while
safeguarding the differences of each model, we propose FedLoss, a novel federated-learning (FL) framework
that tackles the non-IID data heterogeneity present in common wireless environments via local fine-tuning.
By numerical evaluations using realistic channel models, we demonstrate the superiority of the proposed
method over standard federated learning and non-federated learning algorithms.

H.1 Introduction

In recent years, FL has gained much interest as it allows different devices to collaborate on a common
objective without explicitly sharing their data [147]. Each device, in fact, uses local data for local training,
then uploads the model to the server for aggregation, and finally, the server sends the global model back to
the participants.
Different aggregation strategies can be employed by the server. One is FedAvg [148], in which the server
simply averages over the devices’ updates. This is a very effective method when the data are i.i.d. across
clients, but can perform poorly in the case of non-i.i.d. client data distributions [149]. The problem of
non-i.i.d. data distributions is still open, and several strategies are proposed in the literature [150]. In [149],
the authors propose to share a (small) dataset across the clients to regularize the training and mitigate weight
divergence. In [151], the authors propose FedGroup, which employs a clustered-federated learning approach

Dissemination level: Public Page 202/228



Deliverable D5.2
where clusters are formed on the cosine similarity of the model updates of the nodes. The devices within
each cluster then train using FedAvg. Similarly, [152] proposes to split users by performing a hierarchical
clustering.
Meta-learning is another approach to tackle non-IID datasets in federated learning: a meta-learner model is
trained and shared across clients, which then perform local fine-tuning on their own datasets. This approach,
named Personalized FedAvg, was first proposed in [153], and then its performance and optimality analysis
were treated in [154]. Finally, in [155], the authors tackle the data imbalance by re-balancing the training
datasets via the synthetic generation of data points from the minority classes.
The application of federated learning in PLA is at its dawn, and to the best of our knowledge, only a few works
have been done. In [156], we have an Internet of Things (IoT) scenario where multiple constrained devices
collaborate to authenticate the transmitter using the FedAvg algorithm. In [157], a distributed anomaly
detection system for detecting compromised devices in LoRa-enabled IIoT is presented. It exploits device-
specific features such as Carrier Frequency Offset (CFO) as the device fingerprint, whose deviations from
expected behaviors allow for the detection of attackers. In [158], multiple Wi-Fi routers use FedProx [159]
to cooperate in localizing the transmitting device.
In this report, we study a scenario where multiple BSs collaborate to authenticate the transmitting device at
the physical layer. The legitimate transmitter, Alice, can be located in different areas; thus, each BS, Bob,
needs to identify the transmitting area and, by knowing the legitimate one, can authenticate Alice. Trudy,
on the other hand, aims at impersonating Alice by transmitting from another area with respect to Alice, thus
fooling the BSs. The main contribution of this report is FedLoss, a novel FL framework that tackles the
non-IID data heterogeneity present in common wireless environments via local fine-tuning. In particular,
the contributions are as follows:

1. We propose a realistic channel model, taking as baseline the 3GPP specifications.

2. We present FedLoss, the FL framework able to tackle the non-IID data distributions via local finetuning.

3. We numerically evaluate FedLoss, demonstrating its effectiveness even in the case of challenging
channel conditions and scarcity of data.

The rest of the chapter is organized as follows: in Section H.2 we present the System Model, in Section
H.3 we present FedLoss, in Section H.4 we discuss the numerical results, while Section H.5 draws the main
conclusions.

H.2 System Model

In our system, we have 𝐸 BSs that use ULAs with 𝑀 antennas. Each BS aims at authenticating the
received signals at the physical layer; consequently, we have multiple authenticators Bob, each denoted
as 𝑏𝑒, 𝑒 = 1, . . . , 𝐸 . The transmitter Alice, on the other hand, is a single antenna user and can transmit
her messages from multiple positions. These positions are grouped into 𝑁 areas, each denoted with 𝑎𝑛,
𝑛 = 1, . . . , 𝑁 , and the BSs collaborate to infer to which area the received signal belongs. We assume the
BSs to know the provenance area of the legitimate transmitter; thus, their estimated area can be used to
authenticate it. Trudy, whose position is unknown to both Alice and the BSs, on the other hand, is a single
antenna transmitter aiming at impersonating Alice.

H.2.1 Channel Model

Let us refer to 𝒑𝑒 and 𝒑 𝑗 as the positions of base station 𝑏𝑒 and a general transmitter, respectively.
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According to the 3GPP model [160], even in the line of sight (LoS) case, when the transmitter sends a signal,
the BS receives a cluster of 𝐿 signals. The AoA of each ray at the BS is

𝜃
(𝑒, 𝑗 )
ℓ

= 𝜃 (𝑒, 𝑗 ) + Δ𝜃ℓ , (H.1)

where 𝜃 (𝑒, 𝑗 ) is the main AoA from the transmitter in 𝒑 𝑗 and BS 𝑏𝑒, Δ𝜃ℓ ∼ U(−𝜃sp, 𝜃sp) represents the
intra-cluster angular spread and 𝛼 is a coefficient regulating the strength of such random variation on the
AoA.
We assume the transmitter sends OFDM signals, thus the received signal at the subcarrier 𝑘 in the frequency
domain by the BS 𝑏𝑒 upon the transmission of the pilot symbol 𝑥 from position 𝒑 𝑗 is

𝒚 (𝑒, 𝑗 ) (𝑘) = 𝒉 (𝑒, 𝑗 ) (𝑘)𝑥 + 𝒘 ∈ C𝑀×1 , (H.2)

where 𝒉 (𝑒, 𝑗 )
𝑘

is the sum of the LoS and non line of sight (NLoS) components:

𝒉 (𝑒, 𝑗 ) (𝑘) =
√︂

𝜅

𝜅 + 1
𝒉 (𝑒, 𝑗 )LOS (𝑘) +

√︂
1

𝜅 + 1
𝒉 (𝑒, 𝑗 )NLOS(𝑘) . (H.3)

The LoS vector is defined as

𝒉 (𝑒, 𝑗 )LOS (𝑘) =
𝐿∑︁
ℓ=1

𝛾 (𝑒, 𝑗 )𝜷(𝜃 (𝑒, 𝑗 )
ℓ
)𝑒− 𝑗2𝜋𝑘Δ 𝑓 𝜏

(𝑒, 𝑗)
ℓ , (H.4)

where 𝜷(𝜃 (𝑒, 𝑗 )
ℓ
) = 1√

𝑀
[1, 𝑒 𝑗 𝜋 sin 𝜃 (𝑒, 𝑗)

ℓ , . . . , 𝑒 𝑗 𝜋 (𝑀−1) sin 𝜃 (𝑒, 𝑗)
ℓ ] is the steering vector and Δ 𝑓 is the subcarrier

spacing. As the rays come from the same source, in the LoS, the pathloss experienced by each ray is
approximately the same and constant across 𝐿. The channel gain coefficient using the free-space pathloss
formula is 𝛾 (𝑒, 𝑗 ) = 𝑐

4𝜋𝑑 (𝑒, 𝑗) 𝑓𝑐
, where 𝑐 is the speed of light in air and 𝑑 (𝑒, 𝑗 ) = ∥ 𝒑𝑒 − 𝒑 𝑗 ∥ is the distance

between transmitter and receiver. With 𝜏0 = 𝑑 (𝑒, 𝑗)

𝑐
as delay of the first ray, according to the 3GPP we, can

model the delays of the intra-cluster rays as uniformly random around the first one, i.e.,

𝜏
(𝑒, 𝑗 )
ℓ

= 𝜏0 + Δ𝜏ℓ , (H.5)

where Δ𝜏ℓ = Δ𝜏′
ℓ
−min{Δ𝜏′

ℓ
}𝐿
ℓ=1 with Δ𝜏′

ℓ
∼ U(0, 2𝑐DS).

The NLoS vector components on the other hand are i.i.d zero-mean complex Gaussians with covariance
matrix 𝑹 (𝑒, 𝑗 ) = 𝛾 (𝑒, 𝑗 )2𝑰, i.e., 𝒉 (𝑒, 𝑗 )NLOS(𝑘) ∼ CN(0, 𝑹

(𝑒, 𝑗 ) ).
Assuming the transmission of unit power symbols, E(∥𝑥∥2) = 1, the SNR is defined as

SNR(𝑒, 𝑗 ) =
E(∥𝒉 (𝑒, 𝑗 ) (𝑘)∥2)

E(∥𝒘∥2)
=
𝐿 (𝛾 (𝑒, 𝑗 ) )2

𝜎2
𝑤

. (H.6)

The single-input multiple-output (SIMO) channel from the transmitter in position 𝒑 𝑗 and the BS 𝑏𝑒 is the
channel frequency response (CFR) matrix:

𝑯 (𝑒, 𝑗 ) = [𝒉 (𝑒, 𝑗 ) (1), . . . , 𝒉 (𝑒, 𝑗 ) (𝑁S)] ∈ C𝑀×𝑁S . (H.7)

The areas are squares of side 𝑆A centered in positions 𝒑𝑛 of a 3D reference frame, and are denoted as 𝑎𝑛. In
Fig. H.1, we see 𝑁 = 5 areas with side 𝑆A = 400 m with 𝐸 = 4 BSs.

H.2.2 Dataset Description

Each base station 𝑏𝑒 has 𝑁c samples available per area, thus a total number of 𝐶 = 𝑁c𝑁 samples. We denote
as D𝑒 = {(𝑯 (𝑒,𝑖) , 𝑎 (𝑖) ), 𝑖 = 1 . . . , 𝐶} the dataset available at the BS 𝑏𝑒, where 𝑯 (𝑒,𝑖) is the channel in (H.7)
between the BS 𝑏𝑒 and Alice when she is located in 𝒑 𝑗 , which corresponds to area 𝑎 (𝑖) = 𝑎𝑛.
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Figure H.1: Simulation scenario.

H.2.3 Attacker Model

In this paper, we assume the areas 𝑎𝑛 from which a transmitter can send its signal to be common knowledge;
thus, they are known by the BSs Bob, Alice, and Trudy. Trudy aims at impersonating Alice by transmitting
a signal from one of the possible transmitting areas 𝑎𝑛. Yet, we assume Trudy cannot transmit from Alice’s
area, thus if Alice transmits from area 𝑎𝑛, Trudy can only transmit from area 𝑎𝑚 , 𝑚 = 1, . . . , 𝑁 , 𝑚 ≠ 𝑛, i.e.,
she has available 𝑁 − 1 areas.

H.3 Problem Definition and FedLoss

The goal of each BS 𝑏𝑒 is to correctly classify the measured channel 𝑯 (𝑒,𝑖) to the correct area 𝑎 (𝑖) . This
is a multiclass classification problem that can be tackled with standard ML-based classifiers. Still, due to
the scarcity of the available data at each BS, they need to collaborate in a federated approach, i.e., without
explicitly sharing their data. Note that, as the location of the BSs is different, their datasets are intrinsically
non-IID. This complicates the learning problem, as a one-model-fits-all approach proposed by standard
federated learning algorithms (e.g., FedAvg) can perform poorly. Consequently, in this report, we adopt a
first knowledge sharing among BSs in a FedAvg fashion, followed by a local fine-tuning so that each BS can
obtain its own personalized model.
In formulas, with 𝜽 = {𝜃𝑒} the set containing the 𝐸 models in which 𝜃𝑒 is the model for the BS 𝑏𝑒, the
learning problem is

𝜽★ = arg min
𝜽

1
𝐸

𝐸∑︁
𝑒=1
L

(
D𝑒; 𝜃𝑒

)
, (H.8)

where L(·, ·) is the multicalss cross-entropy loss.

H.3.1 FedLoss

The proposed FL framework works in two phases:
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1. FedAvg Phase: In this phase, the goal is learning a single global model 𝜃G using the FedAvg algorithm.

In particular, at each epoch, the global model is updated by computing

Δ𝜃G =
1
𝐸

𝐸∑︁
𝑒=1

Δ𝜃𝑒, (H.9)

where Δ𝜃𝑒 are the local updates. Then the global model gets updated as

𝜃G ← 𝜃G + Δ𝜃G.

2. Fine-tune Phase: Here each BS 𝑏𝑒 fine-tunes the global model 𝜃G with its own dataset D𝑒 to obtain
personalized models 𝜃★𝑒 . More in detail, we have that

𝜃★𝑒 = arg min
𝜃
L

(
D𝑒; 𝜃

)
+ 𝜆∥𝜃 − 𝜃G∥2, (H.10)

where 𝜆 is a regularization parameter that encourages 𝜃 to remain close to 𝜃G.

H.3.2 Switching Epoch

The switching epoch between Phase 1) and Phase 2) is a crucial point, as switching too early results in a
global model not yet converged, while on the other hand switching too late simply wastes training time.
The idea is to monitor the training loss: if the (average) training loss did not decrease enough in the last
𝑇E epochs, then switch to local fine-tuning. In formulas, with 𝜃G,𝑡 the global model at epoch 𝑡, the BS 𝑏𝑒
switches to local training once the following condition is met:

1
𝑇E

𝑡0+𝑇E−1∑︁
𝑡=𝑡0

L
(
D𝑒; 𝜃G,𝑡

)
− L

(
D𝑒; 𝜃G,𝑡−1

)
< Lmin . (H.11)

H.4 Numerical Results

To validate the effectiveness of FedLoss, we compare it with three baselines, named Global, Single, and
FedAvg, considering all the possible transmitting positions of both Alice and Trudy. In the Global case,
there is a ”virtual” single BS that has a dataset containing all the BS data. This is optimal if the datasets
were formed by IID data, i.e., when the BS were located close enough to one another. In the Single case, on
the other hand, all the BS train on their own dataset, even if small. This approach is supposed to work well
when the BSs are far from each other; thus, sharing local information is damaging the overall performance.
Finally, in FedAvg, the BS perform the FedAvg algorithm.
The scenario we used for our simulations is depicted in Fig. H.1, where 𝐸 = 4 BSs collaborate to classify
signals coming from 𝑁 = 5 areas. The parameters we used to generate the channels are the following: a
constant SNR(𝑒, 𝑗 ) = 6 dB,∀𝑒, 𝑗 , 𝜃sp = 6 deg and 𝑐DS = 5 ns, from 3GPP specifications [160]. Each BS has
available 𝑁𝑐 = 32 datapoints per class, thus a total of 𝑁𝑐𝐸 = 𝐶 = 160 samples for training.

H.4.1 Network Architecture

To validate the proposed framework, we employed a standard ResNet-18 CNN as a backbone [161], with a
two-layer fully-connected head. This is a state-of-the-art architecture, which makes our findings replicable
and verifiable.
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Figure H.2: Accuracy VS Epochs for Single Client, Global, FedAvg, and the proposed FedLoss.

H.4.2 Accuracy VS Epochs

Fig. H.2 shows the average accuracy across the BSs as a function of the number of training epochs when
the average distance between BSs is 𝐷bs ≃ 1.1km. We notice that both Global and FedAvg perform poorly,
as expected, since we see from Fig. H.1 that the BSs are very far from each other, leading to very non-IID
datasets across the BSs. The Single performs well despite the small training dataset, but it gets outperformed
by the proposed FedLoss, which achieves the best accuracy across all the methods.

H.4.3 Security Analysis

Fig. H.3 shows the confusion matrices of the proposed method FedLoss and the three baselines, averaged
across BSs. These matrices are used to evaluate the security performance. In fact, assuming Alice is in a
position in the area 𝑎𝑛 and Trudy is in a position in the area 𝑎𝑚, we can find the probability that Trudy is
misled by Alice by looking at the entry (𝑛, 𝑚), 𝑛 ≠ 𝑚 of the confusion matrix. In other words, off-diagonal
elements of the confusion represent the probability that Trudy fools the system. On the diagonal, we find
the accuracy, which can be interpreted as the probability of correctly classifying Alice. By inspecting the
matrices, we see the superiority of FedLoss over all the baselines.

H.5 Conclusions

In this report, we presented FedLoss, a novel federated learning framework that tackles the non-IID dataset
issue common in standard federated learning algorithms by performing local fine-tuning. We numerically
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(a) Single (b) FedLoss

(c) Global (d) FedAvg

Figure H.3: Average confusion matrices for Single Client, Global, FedAvg, and the proposed FedLoss.
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evaluated its performance using realistic channel models in terms of accuracy, showing its superiority both
over state-of-the-art federated and standard non-federated algorithms.
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Appendix I

Jamming Detection in Cell-Free MIMO
with Dynamic Graphs
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by Ali Hossary, Laura Crosara, and Stefano Tomasin

Abstract: Jamming attacks pose a critical threat to wireless networks, particularly in cell-free massive
MIMO systems, where distributed access points and user equipment (UE) create complex, time-varying
topologies. This paper proposes a novel jamming detection framework leveraging dynamic graphs and graph
convolution neural networks (GCN) to address this challenge. By modeling the network as a dynamic graph,
we capture evolving communication links and detect jamming attacks as anomalies in the graph evolution.
A GCN-Transformers-based model, trained with supervised learning, learns graph embeddings to identify
malicious interference. Performance evaluation in simulated scenarios with moving UEs, varying jamming
conditions and channel fadings, demonstrates the method’s effectiveness, which is assessed through accuracy
and F1 score metrics, achieving promising results for effective jamming detection.

I.1 Introduction

Wireless communication increasingly adopts cell-free architectures to enhance connectivity and spectral
efficiency. Cell-free MIMO relies on APs that jointly serve user equipments (UEs) without predefined cell
boundaries. This paradigm shift introduces new challenges related to network dynamics and security [162].
As reliance on wireless services continues to grow, security threats have become a major concern. Wireless
networks, due to the shared nature of the radio spectrum, are particularly vulnerable to jamming [163]. In
MIMO wireless networks, traditional jamming detection methods rely on statistical models, which struggle to
adapt to the complexities of dynamic wireless environments [85]. In contrast, deep learning (DL) techniques
can be applied using a data-driven approach [164]. In [165], a jammer detection method for massive MIMO
systems is proposed, utilizing unused pilots during the training phase, assuming that the jammer lacks prior
knowledge of the pilot patterns. The base station detects the presence of a jammer by analyzing the received
signal on these unused pilots and employing a GLRT. Recent advancements have introduced new solutions,
including NNs for jamming detection [166]. DL approaches, such as CNNs, have been employed in [167,168]
to analyze spectrogram images for jamming detection, outperforming conventional feature-based methods.
Recent advances are tailored to the characteristics of 5G networks [31–33, 169]. In [170], a low-overhead
intermittent jamming detection scheme for IoT networks is proposed, leveraging anchor nodes along with
signal strength and multipath profile features. Furthermore, federated learning has been investigated for
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distributed jamming detection in flying ad-hoc networks [171]. However, all these solutions are agnostic of
the network structures and are not suited for cell-free communications where synchronization is looser.
When users are mobile and channel conditions vary, modeling network behavior is crucial. Dynamic graphs
offer a powerful representation for the evolving topology of wireless networks [172], where nodes corre-
spond to APs and UEs, and edges represent communication links based on signal strength and interference
levels. To process and analyze dynamic graphs data, graph-neural-networks (GNNs) provides a powerful
framework. Inspired by CNNs, GNNs are designed to operate on graph structures, enabling tasks such as
node classification, link prediction, and other graph-related learning problems [173].
In this paper, we propose a novel framework to model cell-free massive MIMO communication, exploiting
dynamic graphs to capture the time variability of the communication scenario. Then, we present a novel
approach for jamming detection, leveraging dynamic graphs and GNN-based architectures. Our approach
identifies jamming attacks by learning latent representations of network states and monitoring deviations from
expected patterns. We evaluate the proposed method using simulations that model mobility, connectivity,
and interference scenarios, demonstrating its effectiveness.
The rest of this paper is organized as follows. Section II presents the cell-free MIMO system model. Sec-
tion III presents the GNN-based jamming detection framework. Section IV evaluates detection performance
through simulations. Finally, Section V draws the conclusions.

I.2 System Model

We consider a cell-free massive MIMO network [174] with 𝑀 APs and 𝑀 UEs, focusing on the downlink
transmission. Each UE is equipped with a single antenna, and each AP is equipped with 𝑁A antennas. APs
are static, while UEs are moving. We adopt a discrete-time model with sampling interval 𝑇 , considering the
network state at time instants 𝑛𝑇 , with 𝑛 ∈ Z. Each AP is associated with a single UE, and uses maximal
ratio precoding to transmit data to its served UE, we may have more UEs than APs, but still at any given
time only one UE is connected to each AP. Moreover, we account for the presence of a jammer that aims at
corrupting the communication between APs and UEs. Each AP is transmitting with unitary power to each
UE.

Channel Model Let 𝒉(𝑘, 𝑚, 𝑛) denote the 𝑁A × 1 vector of the narrowband baseband equivalent channel
between the 𝑘-th UE and 𝑚-th AP at time 𝑛𝑇 . We consider a Rician fading channel; thus, the channel vector
is modeled as

𝒉𝑘,𝑚(𝑛) = 𝛽𝜎𝑘,𝑚(𝑛) +
√︁

1 − 𝛽2𝒈𝑘,𝑚(𝑛), (I.1)

with 𝛽 =

√︃
𝐾
𝐾+1 a constant (and 𝐾 is the Ricean K-factor) and 𝒈𝑘,𝑚(𝑛) being a 𝑁A × 1 random matrix having

i.i.d. zero-mean complex Gaussian entries. The variance of each entry of 𝒈𝑘,𝑚(𝑛) is determined by the
path-loss model, which characterizes the received signal power as a function of the distance 𝑑𝑘,𝑚(𝑛) between
the 𝑘-th UE and the 𝑚-th AP at time 𝑛𝑇 , i.e.,

𝜎2
𝑘,𝑚(𝑛) =

𝑑2
0

𝑑2
𝑘,𝑚
(𝑛)

, (I.2)

with 𝑑0 = 100 m representing the distance at which the channel has unitary variance. With 𝛽 = 1 we obtain
a deterministic model, while varying 𝛽 ∈ [0, 1] we configure the randomness of the fading channel. We
assume that reception is affected by additive white Gaussian noise (AWGN) with variance 𝜎2 per antenna.
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Signal-to-noise-plus-interference Ratio The transmitter applies maximal ratio (MR) precoding to steer
the transmitted signal towards the intended user, and, in the absence of jamming, a connection is established
from the AP 𝑚 to the UE 𝑘 at time 𝑛𝑇 if the signal-to-interference-plus-noise ratio (SINR)

Γ𝑘,𝑚(𝑛) =
| |𝒉𝑘,𝑚(𝑛) | |4

𝜎2 +∑
𝑚′≠𝑚 |𝒉𝐻𝑘,𝑚(𝑛)𝒉𝑘,𝑚′ (𝑛) |2

, (I.3)

is above a threshols Γ0, i.e.,
Γ𝑘,𝑚(𝑛) > Γ0. (I.4)

Note that the formula includes the interference from other APs.

Mobility Model We consider a system with UEs and APs ditributed within a square area of edge length
𝐿. The coordinates of each AP, indexed by 𝑚, are positioned at fixed locations that cover the area. At 𝑛 = 0,
the UEs are uniformly distributed within the square [0, 𝐿]. The coordinates of the position of user 𝑘 at time
𝑛𝑇 are

𝑥𝑘 (𝑛 + 1) = 𝑥𝑘 (𝑛) + (𝑣𝑥,𝑘 + 𝑤𝑥,𝑘 (𝑛 + 1))𝑇,
𝑦𝑘 (𝑛 + 1) = 𝑦𝑘 (𝑛) + (𝑣𝑦,𝑘 + 𝑤𝑦,𝑘 (𝑛 + 1))𝑇,

(I.5)

where 𝑣𝑥,𝑘 and 𝑣𝑦,𝑘 are the reference velocities of user 𝑘 , uniformly distributed in the interval [0, 𝑣max]. The
terms 𝑤𝑥,𝑘 (𝑛 + 1) and 𝑤𝑦,𝑘 (𝑛 + 1) are zero-mean Gaussian components with variance 𝜎2

𝑤 . If a user reaches
the boundary of the square, its position is reset to a new location, uniformly sampled within the square, and
assigned a new reference velocity. We assume that each user maintains a minimum distance 𝑑min from any
AP.

I.2.1 User Assignment Rule

We adopt the following rule for the assignment of UE to its serving AP. We proceed iteratively. We start
with the full list of APs and UEs, and select the UE 𝑘 and AP 𝑚 that have the minimum distance among
all pairs in the list. We assign UE 𝑘 to AP 𝑚, then we remove a couple of devices from the list. The next
iteration identifies the next AP-UE couple among the non-assigned APs and UEs.
Note that this procedure generates the assignment between APs and UEs, while an effective communication
link (connection) between each couple is obtained only if condition (I.4) is satisfied.

I.2.2 Jammer Behavior

We consider the presence of a jammer that intermittently affects the communication between UEs and APs.
Time is divided into 𝐹 frames, each of duration 𝑇F. Within each frame, the jammer remains active for
a duration 𝜏 ∈ [0, 𝑇F]. The jammer is equipped with a single antenna since its target is to disrupt any
communication around it. When the jammer is active, the resulting SINR for a transmission from AP 𝑚 to
UE 𝑘 at time 𝑛𝑇 becomes

Γ𝑘,𝑚(𝑛) =
| |𝒉𝑘,𝑚(𝑛) | |4

𝜎2 + 𝑃𝐽 +
∑
𝑚′≠𝑚 |𝒉𝐻𝑘,𝑚(𝑛)𝒉𝑘,𝑚′ (𝑛) |2

, (I.6)

where 𝜎2
J is the jammer transmit power, 𝑃𝐽 = 𝜎2

J |𝑆𝑘 (𝑛) |
2, and 𝑆𝑘 (𝑛) is the complex scalar channel from the

jammer to UE 𝑘 at time 𝑛𝑇 , according to the Rician model (I.1).
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I.3 Jamming Detection By Dynamic Graph

We model the cell-free massive MIMO network as a dynamic connection graph {𝐺 (𝑛)}, where 𝐺 (𝑛) is the
connection graph at time 𝑛𝑇 and 𝑇 is the sampling time of the graph representation. In particular, each
graph 𝐺 (𝑛) has 𝑁 = 2𝑀 nodes (in the set 𝑉 (𝑛)), corresponding to both the APs and the UEs. The edges
(collected in the set 𝐸 (𝑛)) represent the connections between APs and UEs. Specifically, an edge exists
between UE 𝑘 and AP 𝑚 when (I.4) is satisfied. Each edge from AP 𝑚 to UE 𝑘 is labeled with the vector
𝒘𝑘,𝑚(𝑛) = [𝛼𝑑𝑘,𝑚, 𝜁𝛾𝑘,𝑚], where 𝛼 and 𝜁 are normalization factors that ensure proper scaling between
distance and SINR values. The edge weights encode key connectivity metrics:

• connection distance 𝑑𝑘,𝑚(𝑛), which defines the physical distance between an AP and a UE,

• link quality Γ𝑘,𝑚(𝑛), quantified by the SINR, captures the reliability and performance of the commu-
nication link.

I.3.1 Jamming Detection Technique

Graph neural networks (GNNs) are neural models that capture the dependence of graphs via message passing
between the nodes of graphs. In recent years, variants of GNNs such as graph convolutional network (GCN),
graph attention network (GAT), and graph recurrent network (GRN) have demonstrated ground-breaking
performances on many deep learning tasks [175]. We propose a novel jamming detection framework to
identify jamming attacks in wireless networks, based on the dynamic graph representation. The architecture
leverages the dynamic graph {𝐺 (𝑛)}, graph convolution, and attention mechanisms to capture the distinctive
patterns of connectivity disruptions caused by signal jammers.
The proposed jamming detection system consists of:

1. Feature Extraction, Each static graph𝐺 (𝑛) is constructed from the network topology and connectivity
data between nodes.

2. Spatial processing module (GCN layer): Utilizes two stacked Gated Graph Convolutional layers
to process each network snapshot independently and extract meaningful node-level representations
(embeddings).

3. Temporal processing module (Transformer layer): Applies a multi-head self-attention mechanism
across a sequence of graphs to detect temporal patterns that are indicative of jamming.

4. Classification module: Outputs a binary decision indicating whether the input sequence contains a
jamming attack.

Fig. I.1 illustrates the overall architecture. The system processes sequences of 𝐾 network graphs G(𝑡) =
{𝐺 (𝑡), 𝐺 (𝑡 + 1), . . . , 𝐺 (𝑡 + 𝐾 − 1)}, where each sequence represents a specific network condition over time,
to provide a binary decision on whether jamming activity is present within the sequence.
The system processes a sequence of 𝑁steps consecutive network graphs:

G(𝑛) = {𝐺 (𝑛), 𝐺 (𝑛 + 1), . . . , 𝐺 (𝑛 + 𝑁steps − 1)},

where each 𝐺 (𝑛) represents the state of the wireless network at time 𝑛𝑇 .
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Figure I.1: Architecture of the proposed jamming detection model.

Feature Extraction and Graph Construction

Each static graph𝐺 (𝑛) is constructed from the real-time network topology and connectivity data. From each
graph, we extract the following features:

• Node-level features:

– Degree centrality 𝑑𝑣 (𝑛): the number of connections of node 𝑣 at time 𝑛;
– Node type 𝜏𝑣 ∈ {0, 1}: where 0 denotes Access Points (APs) and 1 denotes User Equipments

(UEs);
– Position coordinates (𝑥𝑣 (𝑛), 𝑦𝑣 (𝑛)): the physical location of node 𝑣 in 2D space.

• Edge-level features:

– SINR Γ𝑢,𝑣 (𝑛): the signal-to-interference-plus-noise ratio between nodes 𝑢 and 𝑣;
– Distance 𝑑𝑢,𝑣 (𝑛): Euclidean distance between nodes 𝑢 and 𝑣, computed as:

𝑑𝑢,𝑣 (𝑛) =
√︁
(𝑥𝑢 (𝑛) − 𝑥𝑣 (𝑛))2 + (𝑦𝑢 (𝑛) − 𝑦𝑣 (𝑛))2.

These features are extracted from the dynamic graph object, which stores node types, positions, and connec-
tion weights between APs and UEs. After conducting ablation experiments by selectively removing features
and measuring the resulting performance, we found the above features to be the most critical for detecting
jamming events.
After experimenting with removing features and measuring performance degradation, the above-mentioned
features are the most impactful for the jamming detection process.
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Spatial Processing Module The extracted node and edge features are fed into a Graph Neural Network to
compute node embeddings. These embeddings encode both the local structure (who a node is connected to)
and attributes (such as position and type). Specifically, for each node 𝑣 at time 𝑛, we compute:

ℎ𝑣 (𝑛) = GNN(𝐺 (𝑛), 𝝃𝑣 (𝑛)),

where 𝝃𝑣 (𝑛) is the feature vector of node 𝑣. The GCN aggregates information from neighboring nodes and
edges, enabling each node to ”learn” a summary of its local neighborhood and behavior.

Temporal Attention and Jamming Classification

The sequence of node embeddings from each graph is passed to a Transformer layer. This layer uses temporal
self-attention to identify patterns across time, specifically, it can emphasize graphs that exhibit abnormal
behavior (such as sudden drops in SINR or rapid topology changes) and downweight normal periods. This
is essential because jamming effects may not be constant but occur intermittently across the sequence.

Classification Module The final detection is performed by a single linear layer that classifies the aggregated
representation. The Transformer outputs a temporal representation 𝑇𝑜 (𝑛), which is passed through a fully
connected classification layer. The final output is the probability of jamming at the sequence level:

𝑝(𝑛) = Softmax(LayerNorm(𝑊 · 𝑇𝑜 (𝑛))). (I.7)

where LayerNorm denotes layer normalization, and 𝑾 is the weight matrix of the classification layer. The
decision is based on whether the probability of the jammer class exceeds a fixed threshold. This design allows
the model to integrate spatial and temporal information effectively, improving robustness and interpretability
in jamming detection

I.3.2 Model Training

The model is trained using the cross-entropy loss in a supervised manner using labeled datasets containing
examples of nominal and jamming scenarios. During training, sequences of graph snapshots are presented to
the model along with binary labels indicating the presence or absence of jamming activity. This supervised
approach enables the model to learn discriminative patterns that distinguish normal network fluctuations
from intentional jamming interference. The weights are optimized using the Adam optimizer, implementing
early stopping when validation performance plateaus.

I.4 Numerical Results

I.4.1 Dataset Generation

To evaluate the proposed jamming detection approach, we generate a dataset of dynamic network graphs
simulating wireless communications with and without jamming interference.
We consider a 𝐿 × 𝐿 area with 𝐿 = 1 km, containing 5 fixed APs and 10 mobile UE nodes. The fixed
APs are positioned at strategic locations covering the area: four at the corners, with coordinates (0.2, 0.2),
(0.8, 0.2), (0.2, 0.8), and (0.8, 0.8), and one at the center (0.5, 0.5) (all in km unit). Mobile UEs move
according to a controlled random walk model with velocity components drawn from a uniform distribution
in [−𝑣max, 𝑣max], where 𝑣max = 6 km/h. We consider 𝑇 = 1 s and 𝑇𝐹 = 10 s. Connectivity between an AP
and UE is established when the SINR exceeds the threshold Γ0 = 5 dB. The noise power is 𝜎2 = 0.001.
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The jammer affects UEs within 0.35 km radius, and it is located in a different random position for each
simulation. The number of network static graphs per sequence G(𝑡) is 𝑁 = 80.
We analyze two distinct scenarios. In the deterministic scenario, we set 𝛽 = 1, resulting in a fixed channel
matrix 𝒉𝑘,𝑚(𝑛). In the fading scenario, we set 𝛽 = 0, such that 𝒉𝑘,𝑚(𝑛) models a Rayleigh fading channel.

I.4.2 GNN Implementation

The architecture was implemented using PyTorch and PyTorch Geometric. We used a GCN layer for each
snapshot of the dynamic graph that consists of 2 Gated Graph convolution layers with 64 hidden units.
The Transformer encoder consists of 4 encoder layers, each with 16 attention heads, 64 hidden units, and
a feed-forward dimension of 128. We use GELU activation in the feed-forward networks and apply layer
normalization with batch-first processing. Since graph sequences have inherent temporal ordering, we add
learned positional encodings to capture temporal relationships. A single linear layer with an intermediate
dimension of 32 is used for binary classification. The model was trained for 30 epochs using the Adam
optimizer with a learning rate of 1.2×10−4, weight decay of 10−6, and batch size of 8. We applied a dropout
of 0.03 in the Transformer layers and 0.05 overall to prevent overfitting. The dataset has 2200 dynamic
graphs for each scenario, training was performed on 70% of the dataset, while 10% of the dataset was used
for validation and 20% for testing.

I.4.3 Performance Metrics

Let TP be the number of True Positives, TN be the number of True Negatives, FP be the number of False
Positives, and FN be the number of False Negatives. The accuracy is

𝑎 =
TP + TN

TP + TN + FP + FN
, (I.8)

F1 score is
𝐹1 =

2TP
2TP + FP + FN

. (I.9)

I.4.4 Simulation Results

This section presents a comprehensive experimental evaluation of our dynamic graph-based jammer detection
system under two primary training scenarios: (1) mixed-𝜏 training using data from all jammer persistence
patterns 𝜏 ∈ {1, 2, ..., 10}, and (2) 𝜏 = 10 specialist training using only continuous jammer scenarios.
The parameter 𝜏 represents the jammer activation frequency within each temporal sequence, where 𝜏 = 1
indicates sporadic jamming (active for only 1 out of 10 timesteps), 𝜏 = 5 represents moderate persistence
(active for 5 out of 10 timesteps), and 𝜏 = 10 denotes continuous jamming (active throughout the entire
sequence). All experiments were conducted with 80-timestep sequences on cell-free MIMO networks,
evaluating performance under both fading and non-fading channel conditions.

I.4.5 𝜏 = 10 Training Analysis

The 𝜏 = 10 results under non-fading conditions, shown in Fig. I.2, achieved accuracy consistently above 99%
across 𝜏 = 1−9, and F1-scores reaching 99.8% at 𝜏 = 3. However, a notable performance degradation occurs
at 𝜏 = 10, where accuracy drops to 97.1% and F1-score to 97.4%. This indicates that training exclusively on
continuous jammer scenarios, counterintuitively, provides excellent generalization to sporadic and rhythmic
jamming patterns under non-fading channels.
In contrast, the fading scenario, shown in Fig. I.3, reveals the specialist’s true generalization limitations and
more pronounced performance variations. While maintaining strong overall performance (accuracy range:
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Figure I.2: Accuracy and F1 score vs 𝜏, for the deterministic scenario. Training performed with a dataset
having 𝜏 = 10.

Figure I.3: Accuracy and F1 score vs 𝜏, for the fading scenario. Training performed with a dataset having
𝜏 = 10.
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Figure I.4: Accuracy and F1 score vs 𝜏, for the deterministic scenario. Training performed with a dataset
having a mixture of attacks with different values of 𝜏.

67.2%-83.8%), the model shows increased sensitivity to jammer persistence patterns, however, a comparison
has been done on the same dataset using the known Long Short Term Memory GCN (GCN-LSTM) [34]
which combines the capabilities of LSTMs to extract temporal dependencies with the feature learning power
of the GCN, and as the figure shows, our model performed better in all projected jamming behaviours. The
performance progression from 𝜏 = 1 (67.2% accuracy) to 𝜏 = 8 (83.8% accuracy) demonstrates the model’s
adaptation to different temporal structures, with optimal detection occurring in the rhythmic jamming domain
(𝜏 = 6 − 8).

I.4.6 Mixed-𝜏 Training Performance

Fig. I.4 shows the performance of our mixed-𝜏 training approach under non-fading channel conditions. The
model exhibit 100% accuracy across 𝜏 = 1 − 9, with minimal degradation to 99.7% at 𝜏 = 10.
In the fading scenario, presented in Fig. I.5, the obtained accuracy ranges from 75.6% at 𝜏 = 1 to 89.7%
at 𝜏 = 8, before decreasing to 79.4% at 𝜏 = 10. The monotonic improvement from 𝜏 = 1 to 𝜏 = 8 (73.2%
to 89.5% F1-score) suggests that the model learns increasingly effective detection strategies as jammer
persistence increases, until reaching the domain boundary at 𝜏 = 9 − 10.

I.4.7 Channel Fading Effects on Detection Performance

Comparing non-fading versus fading scenarios reveals significant differences in detection robustness. Under
non-fading conditions, both training strategies achieve near-perfect performance across most 𝜏 values,
suggesting that the absence of channel fading provides cleaner signal characteristics that enhance jammer
detection reliability. The stable channel conditions appear to preserve jamming signatures without additional
noise from natural channel variations.
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Figure I.5: Accuracy and F1 score vs 𝜏, for the random fading scenario. Training performed with a dataset
having a mixture of attacks with different values of 𝜏.

Conversely, fading scenarios present more challenging detection environments, with performance variations
of 10-15 percentage points across different 𝜏 values. This increased difficulty under fading channels indicates
that channel-induced signal variations may mask jamming signatures, requiring more sophisticated detection
algorithms to distinguish between fading-induced and jammer-induced signal degradations.

I.4.8 Training Strategy Effectiveness Comparison

The mixed-𝜏 training approach demonstrates improved generalization capabilities and overall performance
compared to the 𝜏 = 10 specialist across both channel conditions. Under non-fading conditions, mixed-𝜏
training achieves near-perfect performance (more than 99% accuracy) across the entire 𝜏 spectrum, while
under fading conditions, it maintains reasonable performance levels (76-90% range) with more graceful
degradation patterns. In contrast, the 𝜏 = 10 specialist, despite showing perfect performance under non-
fading conditions, exhibits significant generalization limitations under fading scenarios, with performance
dropping as low as 67% at 𝜏 = 1.
The mixed-𝜏 approach’s enhanced robustness across different channel conditions and jammer persistence
patterns indicates that exposure to diverse jamming behaviors during training provides more generalizable
feature representations. This finding supports the hypothesis that multi-domain training strategies are
essential for robust jammer detection in dynamic wireless environments.

I.4.9 Baseline Shift Problem in Persistent Jamming

The performance degradation observed at 𝜏 = 10 across all experimental configurations can be attributed to
the fundamental baseline shift problem in persistent jamming scenarios. When jammers operate continuously,
cell-free MIMO networks undergo adaptive responses. These network adaptations effectively establish a
new operational baseline where continuous interference becomes the ”normal” state.
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I.5 Conclusions

This paper presented a comprehensive analysis of jammer detection in cell-free MIMO networks using
dynamic graphs and specific graph neural network architecture, revealing insights into the effect of channel
fading in the jamming detection process, and the multi-domain nature of temporal anomaly detection, in
addition to this, our experimental evaluation across different jammer patterns (𝜏 ∈ {1, 2, ..., 10}) demon-
strated that mixed-𝜏 training achieves enhanced generalization compared to specialist approaches, with
performance exceeding 99% under non-fading conditions and maintaining robustness above 75.6% even in
challenging fading scenarios, higher than existing known models. The comparative analysis between fading
and non-fading channels revealed that stable channel conditions significantly enhance detection reliability,
while channel fading introduces additional complexity that degrades performance by 10-15 percentage points
across all 𝜏 values.
A nice finding of this work is the identification of the baseline shift problem in persistent jamming scenarios
(𝜏 = 9−10), where continuous jammer presence causes network adaptation responses that establish a new op-
erational baseline, making traditional anomaly detection approaches ineffective. This phenomenon explains
the characteristic performance degradation observed at high 𝜏 values across all experimental configurations,
highlighting the need for detection strategies that can identify adaptation artifacts rather than direct interfer-
ence signatures. The delineation of three distinct detection domains, namely sporadic (𝜏 = 1 − 3), rhythmic
(𝜏 = 4 − 8), and persistent (𝜏 = 9 − 10), provides a theoretical framework for developing domain-specific
architectures that address the unique challenges of each jammer behavior pattern.
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