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Abstract—Accurate and reliable localization is a key require-
ment for 6G network operations, but it can be particularly chal-
lenging in outdoor environments. In this paper, we propose a ma-
chine learning (ML)-based localization framework that leverages
angle of arrival (AoA) as a feature extracted from channel state in-
formation (CSI). The proposed approach employs high-resolution
Ao0A estimation algorithms, including multiple signal classification
(MUSIC) and estimation of signal parameters via rotational
invariance techniques (ESPRIT), which feed a hierarchical, two-
stage classifier to identify specific trajectories (hereafter referred
to as tracks) in a given outdoor environment. The first stage
of the classifier is a binary line-of-sight (LoS) / non-line-of-sight
(NLoS) classifier, followed by region-specific multi-class classifiers
for fine-grained identification of the specific LoS or NLoS tracks.
We evaluate our approach using a real-world massive multiple-
input multiple-output (mMIMO) orthogonal frequency division
multiplexing (OFDM) outdoor CSI dataset collected at the Nokia
campus in Stuttgart, Germany. Experimental results show that i)
the LoS / NLoS identification accuracy can reach 100%, and ii) the
proposed two-stage approach significantly outperforms a single-
stage multi-class baseline, achieving accuracy over 98% in LoS
regions and 95% in NLoS regions. These findings demonstrate
the potential of combining AoA with ML for robust localization
in outdoor mMIMO propagation environments.

Index Terms—RF localization, 6G, angle of arrival, machine
learning, hierarchical machine learning models, physical layer
authentication.

I. INTRODUCTION

As we step into the age of sixth-generation (6G) networks,
accuracy, reliability, and robust security have become critical
requirements for a wide range of location-based services, span-
ning both indoor and outdoor scenarios such as smart factories,
intelligent autonomous transportation, and augmented / virtual
reality. Localization is also becoming a crucial component of
physical layer authentication schemes [1].

Unlike traditional positioning methods that rely on GPS,
which is often unavailable or unreliable in indoor, dense ur-
ban, or underground environments, radio frequency (RF)-based
localization systems can operate effectively in both indoor
and outdoor settings by leveraging signal propagation laws.
Various wireless positioning techniques have been proposed,
differing with respect to the signal features used in different
algorithms [2], [3]. Received signal strength-based (RSS) meth-
ods are widely adopted due to their ease of implementation
and low hardware requirements. However, they are sensitive to

dynamics in the wireless environment and are prone to small
scale fading. Time-based approaches, such as time of flight
(ToF), time difference of arrival (TDoA), and return time of
flight (RToF), do not require fingerprinting and can provide
high localization accuracy. However, they need high accuracy
time synchronization between transmitters and receivers, en-
abling improved robustness against multipath effects, noise and
interference.

In addition to methods such as time-based and signal
strength-based localization, angle of arrival (AoA)-based meth-
ods estimate the direction of incoming signals and can achieve
high localization accuracy, particularly under line-of-sight
(LoS) conditions. We note that in recent works, AoA in
multiple input multiple output (MIMO) digital array systems
has been proven to be a robust feature for location-based
physical layer authentication (PLA) [4]. In this work, it was
also demonstrated that AoA provides resistance against im-
personation attacks and can also serve as a valuable feature
for training robust ML-based PLA systems. In view of these
results, in this paper, we use AoA as a key feature for robust
localization against impersonation attacks.

Furthermore, in order to address issues related to local-
ization accuracy in NLoS conditions, we investigate the use
of state-of-the-art ML-based classifiers. In recent years, a
wide range of ML techniques have been applied to RF-based
localization tasks due to their ability to address the limitations
of traditional methods, such as sensitivity to environmental
changes, hardware variability, and synchronization issues [5].
k-nearest neighbors (KNN) model presented in [6] achieved
high accuracy for CSI-based indoor localization. Yang et
al. [7] provided a comprehensive survey on ML-based indoor
localization, where supervised methods such as support vector
machine (SVM), KNN, and neural networks are used for offline
fingerprinting. Moblntel [8] demonstrates the effectiveness
of ML methods for passive outdoor localization using RSSI
data. Multipath-based CSI fingerprinting localization has been
proposed in [9], achieving meter-level accuracy for outdoor
localization. These studies demonstrate the effectiveness of
ML-based approaches in various localization scenarios.

In this paper, we develop a hierarchical ML-based frame-
work for outdoor localization in mMIMO OFDM systems,
validated on a real outdoor dataset provided by Nokia [10].



More specifically, our main contributions include:

« Extensive experiments to compare MUSIC- and ESPRIT-
based AoA estimation in a real-world outdoor mMIMO
OFDM dataset in terms of accuracy and computational
efficiency, targeting low-latency and real-time application
requirements.

e A robust AoA-based binary classification approach to
distinguish between LoS and NLoS regions, achieving
100% accuracy.

o A robust region-specific localization approach based on
AoA, leveraging hierarchical ML classifiers to classify
specific trajectories within LoS and NLoS regions sep-
arately, enhancing localization accuracy.

o A comprehensive evaluation of six base ML models,
including logistic regression (LR), KNN, random forest
(RF), gradient boosting machine (GBM), extreme gradi-
ent boosting (XGBoost), light gradient boosting machine
(LightGBM), as well as stacking ensemble model [11],
providing insights into accuracy and computational effi-
ciency.

The rest of the paper is organized as follows: Section II
presents our proposed approach for a two-stage hierarchical
classifier, along with a background on MUSIC and ESPRIT
algorithms for feature extraction. Section III presents the out-
door mMIMO OFDM dataset and the analysis of the results of
our models against the baseline single-stage classifier. Finally,
we conclude the paper in Section IV and discuss possible
perspectives for future work.

II. PROPOSED HIERARCHICAL TWO-STAGE
CLASSIFICATION FOR OUTDOOR LOCALIZATION

In this paper, we focus on outdoor AoA-based localization
in an mMIMO OFDM setting, with potential for application
to both FR1 and FR2 frequency bands. In this work, we
are interested in identifying different users over distinctive
trajectories (tracks). The proposed approach is presented in
Section II-A, while the feature distillation using the MUSIC
and ESPRIT algorithms is presented in Section II-B.

A. Proposed Approach

To address the problem of CSI-based localization in complex
outdoor environments while ensuring robustness against imper-
sonation attacks [4], we propose an ML-based framework that
leverages AoA features as robust inputs for track identification
under both LoS and NLoS conditions. Our approach is de-
signed as a two-stage classifier with the training and inference
processes illustrated in Fig. 1:

1) Training phase - Model development and evaluation:
The CSI data are first preprocessed and segmented using a
sliding window technique. Subsequently, the AoA features
are extracted using the MUSIC and the ESPRIT algorithms.
Then, a hierarchical classifier is trained, consisting of a binary
LoS / NLoS classifier, followed by two specific multi-class
classifiers: one for LoS tracks and one for NLoS tracks. Finally,
the ML-based models are trained and evaluated to select the
best-performing and most robust among them.

Inference phase
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Fig. 1: The proposed hierarchical two-stage classifiers.

2) Inference phase - Realtime track classification: The
incoming CSI samples are processed in real-time to extract the
AoA features. To this end, first, the LoS / NLoS classifier deter-
mines whether the AoA (and consequently the corresponding
CSI sample) originates from a LoS or NLoS region. Based on
the output of the LoS / NLoS classifier in the first stage, the
following actions are taken:

o If classified as LoS, the sample is forwarded to a LoS
track classifier, which performs multi-class classification
among tracks located in LoS regions.

o If classified as NLoS, the sample is forwarded to an NLoS
track classifier, trained for NLoS conditions.

To develop a robust classifier, the training phase involves
training and evaluating multiple ML algorithms, including:
LR, KNN, RF, GBM, XGBoost, LightGBM, and a stacking
ensemble model (combining the top n best performing ML
models, n = 2,...,6). The final classification decision of the
stacking ensemble model is determined by a meta-learner that
combines the outputs of the individual base models. Based
on the model performance metrics (accuracy, precision, recall,
Fl1-score), the most accurate and robust model is selected for
deployment in the inference phase, demonstrated in Fig. 2.

B. Feature Extraction

In our work, we adopted two well-known AoA estimation al-
gorithms to estimate the azimuth angle of the CSI signal. MU-
SIC [12] and ESPRIT [13], [14] are eigenvalue decomposition-
based, high-resolution subspace algorithms commonly used to
estimate AoA of emitted signals in antenna array systems.
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As the primary feature used in our classification framework,
Ao0A provides spatial information about the signal’s propa-
gation path. AoA features were selected because they are
robust against both environmental variations and impersonation
attacks [4]. We briefly describe MUSIC and ESPRIT below.

1) MUSIC: MUSIC first computes the covariance matrix of
the received signal vectors and performs eigenvalue decompo-
sition to separate it into signal and noise subspaces. Exploiting
the orthogonality between these two subspaces, the MUSIC
spectrum is constructed using the array steering vector and the
noise subspace and is formulated as:

1
al(0)E, EHa(0)’

where a() is the steering vector corresponding to the angle 6,
E,, is the matrix of eigenvectors spanning the noise subspace,
and ()7 denotes the conjugate transpose operator. The esti-
mated AoAs correspond to the peaks in the calculated MUSIC
spectrum Pyusic(6).

2) ESPRIT: Unlike MUSIC, ESPRIT does not require
spectral search to estimate the AoA. Instead, the algorithm
determines the rotation operator ® by exploiting the rotational
invariance property between two overlapping subarrays. After
computing the covariance matrix and performing eigenvalue
decomposition, the signal subspace is extracted and partitioned
intoHtwo subarrays F; and FE5. By forming the matrix C =

Eq

153
rotation matrix can be estimated as & = —E12E521. The angles
of arrival 6; are estimated from the eigenvalues \; of ¢ as:

6; = sin ™! (arigi)> , )

Puusic(8) =

6]

[E1  Es] and performing its eigen-decomposition, the

where k = 27” is the wave number and A is the spacing

between subarrays in wavelengths.

In the following section, we showcase the performance
enhancement of the proposed localization approach on a real
mMIMO OFDM outdoor dataset.

Fig. 3: Nokia campus in Stuttgart, Germany. The red rectangle
denotes the mMIMO antenna array mounted on top of a
building, while the lines with arrows represent the trajectories
(tracks) and their respective directions. Red solid lines indicate
NLoS tracks, while blue dashed lines represent LoS tracks.

TABLE I: Data shapes of the original CSI and estimated AoAs
(MUSIC) for LoS tracks (6, 9, 10, 11, 12) and NLoS tracks
(1, 2, 3, 13, 20). The dataset generated using ESPRIT follows
the same format.

AoA data shape by window size

Tracks | CSI data shape 500 1000 2000
1 (60, 50, 120000) | (479, 200) | (239, 200) | (119, 200)
2 (60, 50, 120000) | (479, 200) | (239, 200) | (119, 200)
3 (60, 50, 122000) | (487, 200) | (243, 200) | (121, 200)
13 (60, 50, 122000) | (487, 200) | (243, 200) | (121, 200)
20 (60, 50, 118000) | (471, 200) | (235, 200) | (117, 200)
6 (60, 50, 96000) (383, 200) | (191, 200) (95, 200)
9 (60, 50, 120000) | (479, 200) | (239, 200) | (119, 200)
10 (60, 50, 120000) | (479, 200) | (239, 200) | (119, 200)
11 (60, 50, 120000) | (479, 200) | (239, 200) | (119, 200)
12 (60, 50, 92000) (367, 200) | (183, 200) (91, 200)

III. EXPERIMENTAL RESULTS

In this section, we present experimental results to evaluate
the proposed method using a real-world 64-antenna mMIMO
50-subcarrier OFDM outdoor dataset at FR1 (2.18 GHz)
collected at Nokia campus, in Stuttgart, Germany [10]. All
experiments were carried out on a server equipped with an Intel
Xeon X7550 CPU (4 sockets, 64 threads, 2.00 GHz), 188 GiB
of DDR3 RAM and running Ubuntu 22.04 LTS. Additionally,
we used the Python multiprocessing module to distribute tasks
in parallel across all 64 logical cores.

A. Dataset Description

The dataset consists of uplink CSI measurements from a
mMIMO digital antenna array consisting of 64 elements, which
was mounted on top of a building at a height of 20 meters with
a mechanical downtilt of 10 degrees. The array was arranged
in 4 rows X 16 columns of single-polarized patch antennas.
The horizontal spacing between antennas was \/2, and the
vertical spacing was ), at a central frequency of 2.18 GHz. 50
OFDM subcarriers over a 10 MHz bandwidth for each antenna
and pilot bursts were transmitted every 0.5 ms. The receiver
used for experiments was a monopole antenna placed on a
cart at an approximate height of 2 meters. This cart moved
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Fig. 4: Example of AoA estimation results for track 11, using
antenna row 0 at subcarrier 10, with a window size of 1000.

TABLE 1II: Performance of MUSIC and ESPRIT in AoA
estimation across track 11.

AoA estimation (°) | Processing time (s)

Algorithm Mean Std Dev Total Mean
MUSIC -35.17 1.71 7.1672 0.0300
ESPRIT -35.30 1.63 0.2777 0.0012

along predefined trajectories (tracks) with an average speed of
3.5 km/h, and the spatial sampling interval was 0.5 mm. The
dataset size for each individual track is listed in Table I.

Due to the presence of obstacles such as buildings and trees,
this area included both LoS and NLoS regions. In this work,
we focused on five tracks located in the LoS region (track 6,
track 9, track 10, track 11, track 12) and five tracks located in
the NLoS region (track 1, track 2, track 3, track 13, track 20),
depicted in the campus map in Fig. 3.

B. AoA Feature Extraction

We used the CSI dataset described above to distill vectors
of AoAs over different rows of the antenna array and different
subcarriers. Let H € CNV*EXT denote the CSI matrix, where
N = 64 is the total number of antennas, arranged as 4 rows
and 16 columns, K = 50 is the number of subcarriers, and 1T’
is the total number of consecutive measurement locations on
each track, spaced at intervals of 0.5 mm.

As presented in Section II-B, MUSIC and ESPRIT algo-
rithms are used for each individual azimuth AoA estimation.
Given that the precision of both algorithms depends on the
size of the input vectors, we have investigated the impact of
this on the classification performance by using a vector W €
{500, 1000, 2000} of consecutive measurements for AoA esti-
mation. As a result, CSI measured over ranges of {0.25,0.5,1}
meters is used for each AoA estimate. Furthermore, to augment
the AoA dataset, we slided the windows W over each of the
tracks. Each window overlaps by 50% (shi ft_ratio), ensuring
a smooth transition between consecutive data frames on tracks
and increasing the number of data samples for training ML
models. Consequently, three different configurations of input
datasets were produced as described in Table I.

Furthermore, each of the four rows of the uniform linear
array (ULA) was used independently to estimate four AoAs.

Additionally, we utilized the 50 OFDM subcarriers to obtain
50 AoA estimates, resulting in a vector of 4 x 50 = 200
AoA values for each individual window of W values on each
track. For each row r € {0,1,2,3}, k € {0,...,K — 1},
and measurement window index [ € {0,..., L — 1}, the input
matrix to AoA estimation algorithm was defined as:

xO =[H, 1, ne{rM,...,(r+1)M -1},
te{l-S,....1-S+W —1},

where W is the window size, S is the step size between
consecutive windows, and L is the total number of overlapping
windows. L is defined by Eq. (4) given below

N-W
L:{ - J+1, @

where N is the number of measurements in the whole track,
W is the window length, S = W - shift_ratio (with
shift_ratio = 0.5) is the step size between windows.

Fig. 4 illustrates an example of AoA estimation results for
track 11, using antenna row 0 at subcarrier 10, with a window
size of 1000. It can be observed that the mean estimated AoA
values of both algorithms are nearly identical, —35.17° and
—35.30° for MUSIC and ESPRIT, respectively, with standard
deviations of approximately 1.71° and 1.63°. Besides, a com-
parison of processing times between the MUSIC and ESPRIT
algorithms shows a significant difference, as shown in Table II.
In this result, we can see that the total processing time across
the entire track using MUSIC is 7.1672 seconds, approximately
26 times longer than that of ESPRIT (0.2777 seconds). The
average processing time per estimate is 30 milliseconds for
MUSIC and 1.2 milliseconds for ESPRIT.

3

C. Classification Performance

We carried out experiments that included the training and
evaluation of three classifiers: LoS / NLoS classifier, LoS track
classifier, and NLoS track classifier. In addition, we performed
experiments using a single multi-class classifier to distinguish
all tracks to compare their performance with our proposed
hierarchical architecture, as detailed in Section II-A. During the
experimental process, we collected evaluation metrics such as
accuracy, precision, recall, and F1-score to assess and compare
the performance of these models. Additionally, we employed 5-
fold cross-validation, where the dataset is split into five subsets:
one fold is used for validation, while the remaining folds are
used for training. The results were averaged and used in the
evaluation to ensure statistical reliability.

1) Performance of LoS / NLoS Classifier: The LoS / NLoS
classifier is a binary classifier that distinguishes between LoS
and NLoS tracks. Before training, we divided the tracks into
two groups, LoS and NLoS, and assigned labels. The classifier
was then trained using these labeled samples and achieved
perfect classification with accuracy equal to 1. This result is
extremely important because, as previously discussed, the LoS
/ NLoS classifier plays a critical role in our approach as it
is positioned at the first stage of the hierarchical architecture.
Any misclassification at this stage can misroute samples to



Approach | W LR KNN RF GBM XGBoost LightGBM | stacking top 2| stacking top 3| stacking top 4| stacking top 5| stacking top 6
MUSIC|ESPRIT|MUSIC|ESPRIT|MUSIC|ESPRIT|MUSIC|ESPRIT|MUSIC| ESPRIT|MUSIC| ESPRIT|MUSIC| ESPRIT|MUSIC| ESPRIT|MUSIC| ESPRIT|MUSIC| ESPRIT|MUSIC|ESPRIT]
2000] 50.1 | 60.4 | 724 | 90.3 | 87.1 | 874 | 71.2 | 6B.3 75 | 737 | 742 | 754 | 837 | 93.5 | 856 | 93.5 | 868 | 93.5 | 89.4 | 93.5 | 894 | 95
NLOS |1000| 33.9 | 409 | 484 | 729 [ 786 | 786 | 60.7 | 637 | 714 | 743 | 749 | 77.1 | 80.3 | 814 | 80.9 | 84.7 80 | 89.2 | 80.4 | 89.8 | 815 | 89.7
500 )| 346 | 363 | 304 | 45 | 658 | 64.3 | 57.1 | 511 67 | 642 | 705 | 665 | 718 | 695 | 73.5 | 70.5 | 74.3 | 70.5 75 | 736 | 75.4 | 757
2000) 71.1 | 86.7 | 766 | B5.1 | 94.3 | 926 | 89.5 | 834 | 89.1 | 847 86 | 823 | 943 | 939 | 935 | 94.1 | 935 95 | 976 | 954 | 98 | 954
Los 1000] 48.3 59 | 658 | 757 | 874 | 768 | 773 | 696 | 812 | 725 | 83.2 | 746 | 881 88 | 878 | 885 | 851 | 89.9 | 89.7 | 89.6 | 90.1 | 89.9
500) 349 | 426 | 444 | 562 | 711 | 635 | 706 | 617 | 728 | 646 | 774 | 668 | 781 | 675 | 78.2 68 | 78.3 68 | 79.1 | 70.1 | 80.1 | 714
LOS+NLOS 2000] 60.6 | 73.55 [ 74.5 | B7.7 | 90.7 90 |60.35| 75.85|62.05| 79.2 | 80.1 | 78.65] B9 | 93.7 | 89.55 | 93.8 | 90.15 | 94.25 | 93.5 | 94.45 | 93.7 | 95.2
(averaged) 1000| 41.1 | 49.95 | 57.1 | 74.3 83 | 777 69 | 66.60 | 76.3 | 73.4 | 79.05 | 75.85 | B84.2 | 84.7 | 54.35 | 86.6 | 54.05 | 89.55 | 55.05 | §9.7 | 85.56 | 89.8
500 | 34.75 | 39.45 | 374 | 50.6 | 66.45 | 63.9 | 63.85 | 56.4 | 69.9 | 644 | 73.95 | 66.65 | 74.95 | 68.5 | 75.85 | 69.25 | 76.3 | 69.25 | 77.05 | 71.85 | 77.75 | 73.55
LOStNLOS 2000] 60.2 69 | 747 | 878 | 90.4 | 888 | 80.1 | 745 | B1.2 | 786 79 | 745 | 885 | 943 89 | 943 | 883 | 946 | 935 | 945 | 94.2 | 949
(single) 1000 42.1 | 529 57 | 746 | 817 | 772 | 681 | 656 | 752 | 718 | 774 | 725 | 821 | 87.8 | 822 | 89.2 | 82.7 | 89.5 | 84.2 | 896 85 | 89.3
500 ) 354 | 40.8 | 37.7 | 51.5 | 68.6 | 646 | 61.8 | 565 | 69.4 | 639 | 72.8 66 | 73.8 | 67.9 | 747 | 687 | 749 | 69.2 | 75.4 | 726 | 77.2 | 74.2

Fig. 5: Accuracy (%) results for the hierarchical approach (including separate LoS

and NLoS results, their average) and the

single multi-class classification approach. The color scale ranges from red (low accuracy) to green (high accuracy).

the wrong classifier, affecting final prediction accuracy. Fur-
thermore, we note in passing that this result has a wider
potential interest for other applications, beyond localization
(e.g., beamforming, ranging, etc.).

We performed this evaluation using six models, including
LR, KNN, RF, GBM, LightGBM, XGBoost, with the training
data gradually increased from 5% to 80% in steps of 5%.
Table IIT presents LoS / NLoS classifier (first-stage) results
using AoA features estimated by MUSIC. All models per-
formed perfectly across the evaluated metrics. For conciseness,
the table reports the results at 80% of the training data.

We observed that when trained with sufficient data, the
first-stage classifier maintains perfect accuracy, without neg-
atively impacting the performance of the LoS and NLoS track
classifiers in the second stage. With only 5% of the training
data, all models achieved over 97% accuracy, demonstrating
the strong discrimination ability of the AoA-based features.
Remarkably, KNN and RF achieved 100% accuracy using
just 5% of the training data across all tested window sizes
(500, 1000, 2000) for AoA estimation. Additionally, both mo-
dels exhibited significantly lower training times than the others,
highlighting their efficiency. However, KNN has a considerably
longer inference time than LR, RF, or GBM. For real-time
applications where inference speed is critical, LR and GBM
provide ideal performance with inference times of 0.24 — 0.26
ms and 0.78 — 0.82 ms, respectively.

2) Performance of Track Classifiers: Since the LoS / NLoS
classifier determines whether a given sample belongs to the
LoS or NLoS region, it allows second-stage classifiers to
focus on training and classifying tracks within their respective
regions. This separation allows each classifier to be trained
with more homogeneous data, improving overall performance.
For training and evaluating the LoS track classifier, we used
data from track 6, track 9, track 10, track 11, and track 12. For
the NLoS track classifier, we used data from track 1, track 2,
track 3, track 13, and track 20. Thus, both classifiers perform
5-class classification at this stage. To evaluate and compare
the effectiveness of the proposed two-stage model, we also
built a single-stage baseline classifier that performs direct track
classification without the step of LoS / NLoS region separation.
This single-stage model serves as the baseline performance.

TABLE III: Model performance (including accuracy, F1-score,
and ROC AUQC), training time in seconds (T (s)), and inference
time in milliseconds (I (ms)) across different window sizes (W).

Model (W) Acc. | F1 | AUC T (s) | 1T (ms)
LR (2000) 1 1 1 0.029 0.239
LR (1000) 1 1 1 0.123 0.238
LR (500) 1 1 1 0.315 0.264
KNN (2000) 1 1 1 0.002 | 72.657
KNN (1000) 1 1 1 0.002 | 77.847
KNN (500) 1 1 1 0.004 | 83.951
RF (2000) 1 1 1 0.377 | 12.485
RF (1000) 1 1 1 0.569 | 11.896
RF (500) 1 1 1 1.003 | 11.929
GBM (2000) 0.99 | 0.99 1 3.439 0.794
GBM (1000) 0.99 | 0.99 1 7.804 0.817
GBM (500) 0.99 | 0.99 1 17.426 0.824
LightGBM (2000) 1 1 1 19.498 | 11.020
LightGBM (1000) 1 1 1 27.386 | 11.485
LightGBM (500) 1 1 1 40.610 | 11.850
XGBoost (2000) 1 1 1 26.473 | 53.174
XGBoost (1000) 1 1 1 28.684 | 53.324
XGBoost (500) 1 1 1 28.540 | 52.469

The experimental results, presented in Fig. 5, show that the
two-stage approach generally performs better or at least equally
well when compared to the single-stage approach, particularly
when using ESPRIT for AoA estimation and most individual
models. Tree-based algorithms such as RF, GBM, XGBoost,
and LightGBM achieve better results under the two-stage setup
for both MUSIC and ESPRIT. Stacking models (choosing from
top 2 to 6 individual classifiers) consistently show the highest
classification performance, particularly when using ESPRIT.

In most cases (but not for the maximum accuracy achieved),
ESPRIT outperforms MUSIC as the AoA estimation algorithm.
Combining ESPRIT with a top-6 stacking model yields the
overall best classification accuracy. However, this improvement
comes with increased computational cost. Therefore, trade-offs
between performance and computational efficiency must be
considered. The corresponding training and inference times
for ML models are shown in Table IV. Stacking the top-6
model has the highest results (98% with MUSIC, 95.4% with
ESPRIT). Fig. 6 shows the accuracy comparison of the top-6
stacking model for LoS and NLoS tracks using MUSIC and



TABLE IV: The comparison of accuracy, training time, and
inference time across ML models for MUSIC and ESPRIT
(window size = 2000), sorted by accuracy.

Models | Accuracy (%) [ Training (s) [ Inference (s)
MUSIC
Stacking Top-6 97.98 1023.9869 0.0657
RF 94.30 0.5239 0.0110
GBM 89.46 10.6841 0.0018
XGBoost 89.10 117.3329 0.0212
LightGBM 85.98 103.7215 0.0063
KNN 76.62 0.0020 0.0383
LR 71.09 0.6774 0.0003
ESPRIT
Stacking Top-6 95.38 1260.2022 0.0693
RF 92.61 0.7599 0.0108
LR 86.73 0.7763 0.0002
KNN 85.06 0.0020 0.0374
XGBoost 84.69 120.0175 0.0211
GBM 83.41 28.4534 0.0017
LightGBM 82.32 137.4263 0.0044
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Fig. 6: Accuracy comparison of the top-6 stacking ensemble
between LoS and NLoS across different window sizes using
MUSIC and ESPRIT.

ESPRIT. Still, the training time exceeds 1000 seconds, and its
inference time (above 60 ms) is significantly higher than that of
other algorithms. Conversely, lightweight models such as LR
and KNN provide fast inference but result in lower accuracy,
achieving 71.1% and 76.6% with MUSIC, respectively. RF
delivers an excellent balance, achieving high accuracy (94.3%
with MUSIC, 92.6% with ESPRIT) with low training time
(0.52 — 0.76 s) and low inference (approximately 11 ms).

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, we proposed a hierarchical ML-based frame-
work for track identification, leveraging robust AoA features
estimated using high-resolution algorithms (MUSIC and ES-
PRIT). Extensive experiments have shown that the proposed
framework achieves perfect classification between LoS and
NLoS regions. Furthermore, an accuracy of 98% was achieved
for LoS track identification, while an accuracy of 95% was
achieved for NLoS track identification. For future work, com-
bining both azimuth and elevation angles will be used to further
increase accuracy. Another promising direction is the applica-

tion of convolutional or graph-based neural networks to capture
spatio-temporal information embedded in AoA distributions.
Furthermore, we can extend region-based localization toward
fine-grained coordinate-level positioning for more precise lo-
calization. This work can serve as a foundation for location-
based trust evaluation as we proposed in [15]. Additionally, the
model’s outputs can be incorporated in location-based physical
layer authentication as proposed in [4].
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