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Abstract—Internet of Things (IoT) technology represents
an important opportunity for future smart buildings.
However, IoT systems require robust security measures
to protect against threats that could compromise system
functionalities, data privacy, and even the safety of
inhabitants. To this end, this paper proposes a multi-
layer intrusion detection system (ML-IDS) that operates
at both the network and sensor layers making use of a
unified data engineering strategy for network and sensor
data. The proposed solution is based on a general-purpose
system that can accommodate new types of data available
at network layer or other information generated by new
IoT devices added to the system. To reduce the amount of
data, the method introduces a data compression strategy
based on sampling, aggregation, and image conversion,
which allows the use of Convolutional Neural Networks
(CNN). Performance analysis demonstrates the system
effectiveness in identifying attacks at the network layer,
achieving a False Negative Rate (FNR) of 0.16% and
a False Positive Rate (FPR) of 4.76%, and at the IoT
layer, with strong performance on four out of six types
of sensors. Additionally, the data compression approach
efficiently manages to convert data of different nature
while reducing the validation dataset size from 20GB to
2MB.

I. INTRODUCTION

Smart buildings are bringing about a huge advancement
in making environments more efficient, sustainable, and
user-friendly. These evolving ecosystems integrate var-
ious devices, from lighting to heating, ventilation and
air conditioning (HVAC) systems, in ways that enhance
both comfort and efficiency. This integration indicates
that in the future, buildings will not only adapt to our
needs but also anticipate them [1][2]. However, the
huge amount of technology employed to enable smart
buildings introduces complex security vulnerabilities,
thereby increasing risks to privacy, security, and safety.
The integration, as well as increased dependence on
interconnected systems, raises the possibility of cyber-
physical attacks, which can disrupt essential services
and, in extreme cases, endanger lives [3][4]. Smart
buildings collect huge quantities of data which can
disclose many details about the behavior and routines
of the people living or working in them. The sensitivity
of this information has been underscored in a prior
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study [3]. For these reasons, security measures that stop
intruders from accessing the system without permission
need to be deployed. Also, any such measure should
abide by rules that look after individuals’ personal
information, e.g. General Data Protection Regulation
(GDPR) among others [5].

II. RELATED WORK

In an IoT-enabled context such as smart buildings,
Machine Learning-based intrusion detection systems
(IDS) are a widely adopted solution due to the complex
and dynamic nature of the setting that generates huge
amounts of data [6][7][8][9]. A general framework for
Machine Learning (ML) applied to IDS is presented
in [10] consists in four steps: data collection, data
preprocessing, learning and interpretation. However,
analyzed solutions do not focus on attack detection in
smart environments at multiple layers of the architec-
ture: [11] focuses on a novel technique for network
data feature extraction and optimization to enhance
detection capabilities, [12] explores the use of spe-
cific loss functions to optimize IDS performance for
underrepresented classes, and [13] employs Principal
Component Analysis (PCA) to efficiently manage large
data volumes making the IDS more efficient. While
these solutions are valuable, they focus exclusively on
network data and often overlook attacks that do not
use the newtork as attack vector (e.g., jamming of a
sensors). Moreover, the data reduction and optimization
techniques proposed in these works are tailored to
network data and are not general purpose techniques
that can be applied to other data types.

A. Paper contribution

This paper proposes a novel ML method for smart
building IDS that operates at both the network and IoT
layers to identify structured attacks at network layer
and anomalies on IoT sensors. The method is based on
a general-purpose data preprocessing and engineering
system that uses the same methodology for both net-
work and IoT data. This characteristic allows the entire
system to adapt to new network features and new sensor
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data. The proposed ML-IDS is further characterized
by compressing and transforming the resulting data in
images to exploit the great advances of CNN in image
analysis for extracting useful information.

III. THE DATASET

This section presents a brief review of some of the most
recent IoT security datasets available in the literature to
identify the most suitable for developing and testing the
smart building ML-IDS method. While [14] provides an
extensive overview of available IoT network security
datasets, this review focuses on a subset composed of
three datasets:

1) CIC-I0T: the CIC-IoT dataset [15] includes approx-
imately 105 IoT devices that participate either as attack
vectors or targets. The dataset groups attacks into seven
major types, providing a rich testing ground for IDS.

2) Aposemat IoT Dataset: the Aposemat IoT dataset
[16] focuses on malware within IoT networks, includ-
ing traffic from actual IoT devices such as Amazon
Echo and Philips Hue.

3) ToN-IoT: the ToN-IoT dataset [17] provides data
from three different sources: telemetry from IoT de-
vices, operational system logs, and network traffic.
The testbed simulates a real-world smart city network
including a virtualized architecture of cloud services,
a fog layer, and an edge layer in which different IoT
devices are simulated.

Feature CIC-IoT ToN-IoT Aposemat
IoT Devices ~ 100 ~ 10 ~ 10

Attacks generic! generic? malware>
Data Format .pcap, .csv .pcap, .csv .pcap
Available Data nw* nw#, os?, t© nw#

TABLE I: Comparison of IoT Security Datasets.

Brute Force, DoS, DDoS, Flooding, Injection, Mirai, Scanning,
Spoofing.

Backdoor, DoS, DDoS, Injection, MITM, Scanning, Ransomware,
Password Guessing, XSS.

Mirai, Torii, Trojan, Gagfyt, Kenjiro, Okiru, Hakai, IRCBot, Ha-
jime, Muhstik, Hide & Seek.

Network data.

Operative Systems logs.

Telemetry data from sensors.
The datasets are evaluated based on their ability to
represent characteristics relevant to the smart building
scenario, including multiple IoT devices and network
traffic patterns that reflect real-world smart building
environments. Table I provides a summary of the char-
acteristics considered in the dataset selection process.
While each dataset has distinct strengths, the ToN-
IoT dataset was selected because of its realistic smart
city testbed, that provides a robust environment for
simulating smart building networks. Furthermore, this

Traffic type | Total data records
Backdoor 508,116
DDoS 6,165,008
DoS 3,375,328
Injection 452,659
MITM 1052
Password 1,718,569
Ransomware 72,805
Scanning 7,140,161
XSS 2,108,944
Normal 796,380

TABLE II: Network attacks distribution

dataset is the only one that provides both network and
sensor telemetry data, allowing for the development
of a multi-layer IDS. However, the use of simulated
IoT devices (Thermostat, Fridge, GPS, Garage Door,
Motion Light, and Weather station) represents a limi-
tation: the dataset provides only device captures, not
including information about the sensors’ state (e.g.
power consumption, connectivity state, battery state,
etc..), that could be useful to add another layer of
detection to the proposed method. The attacks present
in this dataset are carried out using complete systems
(Kali machines) and, for each type of attack, the tools
and the steps are meticulously reported, making both
the testbed and the attacks fully replicable. However,
two over nine of the available attacks were removed
from the analysis after an examination of the dataset,
which revealed significant differences in the number of
packets across the various attack categories. In fact, in
Table II, it can be observed that the instances of man-in-
the-middle (MITM) and Ransomware are significantly
lower than those of other attacks, making the dataset
extremely unbalanced.

IV. DATA PREPROCESSING AND ENGINEERING UNIT

This section details the design and development of
the general-purpose data preprocessing and engineering
system designed to transform raw data into a format
compatible with ML, thus making it ready for training
and inference. Throughout the design and develop-
ment phases, the following principle was followed: all
decisions regarding the selection and design of tools
and frameworks were made with the specific goal
of building a general-purpose data engineering chain
capable of processing any kind of raw network and
sensor data. Therefore, this system can theoretically
convert any .pcap file generated by network traffic
measurement tools and .csv data generated by sen-
sors into a ML-compatible format. Thus, the system
is not strictly tailored to the ToN-IoT dataset. The
network and sensor data are processed using the same
pipeline, which consists of encoding, sampling, and
image conversion. The architecture of the Data Pro-
cessing and Engineering Unit, which is described later
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in this section, is shown in Figure 1. Note that the
sensor data are in .csv format and are ready to be pre-
processed, while the network data requires an extra
step: extracting network features from the raw .pcap
format. The Zeek (ex Bro) [18] tool was used to extract
the relevant network features for this purpose, first
extracting nine different log files related to different
protocols (conn.log, dns.log, files.log, http.log, ntp.log,
packet_filter.log, ssl.log, weird.log, X509.log) from the
.pcap. Then, these .log files are merged into a single
.csv file containing all the information from the differ-
ent protocols for each packet. This approach, similar
to the one described in [17], was chosen because it
can be automated and its execution does not require
direct human intervention. On the contrary, alternative
approaches, such as the one proposed in [15] and based
on the use of the DPKT [19] tool, may require human
intervention.

A. Data preprocessing

The data preprocessing step is minimal, primarily fo-
cused on data formatting and the dropping of unfor-
mattable instances. This process is carried out ensuring
that the preprocessing stage remains flexible enough to
accommodate diverse datasets without requiring human
intervention. The preprocessing module takes as input
the .csv files of the different sensors and the .csv file of
the network features extracted by Zeek. The operations
performed by the module are:

1) Sensor data: these data are numerical (e.g., the
temperature of the fridge) or boolean (e.g., the state
of the garage door). The only data preprocessing step
is spotting and formatting malformed data. For boolean
features, malformed values such as “False”, “false”, “f”,

» o
t

“True”, “true”, “t”, are converted into a common binary
representation (0,1). For numerical features, malformed
values (e.g., strings) are dropped.

2) Network data: network data are both categorical
(e.g., HTTP methods) and numerical (e.g., connection
duration). Categorical features are converted into in-
teger features using a custom Label Encoder, which
iterates and collects all the possible values for a partic-
ular feature to create a string:int mapping, used
for conversion. The different mappings are kept in a
file that can be accessed to load the Label Encoders
and use them in the future to convert other data,
while keeping the same mapping. With this type of
data, there are two issues to deal with for numeric
features: malformed values and large values. In the
first case, as with sensor data, malformed values are
discarded. In the second case, wide-range values (e.g.,
duration, number of bytes or packets) are converted
to logarithmic scale to be efficiently represented in a
narrower range of values. A common preprocessing
phase is the conversion of the date:time pair in
the sensor data and the timestamp (UNIX) of the
network data into a common timestamp YYYY/MM/DD
hh:mm: ss format. After these steps, all the data are
scaled with a Robust Scaler, which normalizes the data
by removing the median and scaling according to the
quantile range, preserving the outliers. The ML-IDS
uses binary labels for the sensors. This approach allows
the IDS to act as an anomaly detection system at the
sensor layer, focusing on identifying deviations from
normal behavior within the sensor data streams. In
contrast, the network-based component of the ML-IDS
has a broader scope, covering different types of network
cyber-attacks.

B. Data sampling

The purpose of the data sampling step is to reduce
the training and inference overhead by reducing the
amount of data. This approach differs from standard
evaluations made on the ToN-IoT dataset, where each
packet, or a series of packets, represents an instance
for training or prediction. Also, sampling data within a
time window allows the extraction of new descriptive
metrics for each feature in the selected time window.
Sampling and aggregation are carried out using the
python pandas tool resample and aggregate
within a 10-second rolling window with a 5-second
offset. The feature values of each time window are
aggregated using custom aggregation methods for each
data type, as follows:

o Numeric features are represented by three new
metrics extracted from the feature values in the
time window: minimum, maximum, and average.

o (ex) Categorical features are represented by three
new metrics extracted from the feature values
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TABLE III: Effect of the data sampling on time space
and features space - Considered dataset.

in the time window: first, second, and last most
frequent value.

e Binary label are aggregated using any logic.
Therefore, if even one capture is marked as ma-
licious, the entire window of data is marked as
malicious.

o Multi-class labels are aggregated using the most
frequent logic. Therefore, the window label is
assigned as the most frequent value. However, if
the most frequent value is “normal” but there is
still at least one attack, the second most frequent
value is assigned.

This step transforms each original feature into three
new features. In summary, the method reduces the data
in the time space, but expands it in the feature space.
Referring to the considered data set, Table III shows
how this procedure reduces the number of samples
while increase the number of features.

C. Image conversion

After the data sampling process, each feature within
the time window is now described by three metrics:
the minimum, the maximum, and the average values
for numerical features and the first, the second, and
the last most frequent values for categorical features.
This representation provides a comprehensive overview
of the value distribution within the time window and
can potentially be applied to any new type of network
observations and sensor data. To further reduce the
amount of data to be processed, a 3:1 display ratio
is used. In particular, the feature metrics are assigned
to the RGB intensity of pixels in an image. There are
two main reasons for this choice: representing each of
the three features as an RGB pixel reduces the amount
of data by one-third, minimizes the inference overhead,
and allows the use of consolidated deep neural network
(DNN) technologies such as CNNs, which have been
widely used and proven in various image-related tasks
[20]. To perform this task, data are re-shaped into
3-dimensional matrices, as represented in Figure 2,
to be later converted to images. The sensor data is
transformed into a 6x3x3 matrix. Each row of the
matrix represents a sensor, and each cell contains a

Source Num. Num. of Num. Num. of [PPSR R S S U N
original original samples features PV PR SO PV PR P 7 o de e o7
samples features after s. after s. N1 |N1,2 | N13|N1a| N5 |Nig | N17 —p7) S1,1(51,2|S1,3 —p3

7 31

Network | 24,000,000 42 45,000 126 Na,1 [N22|N2.3|No4 |N2s5|N26 (N2,7 |57 S2,1|82,2 (523 4.3

Fridge 39,944 2 5,371 6 N3,1[N3,2(N3,3(N34|N35|N36|N3,7 i4,7 53,1(53,2(533 i?

Weather 39,260 3 4,937 9 Ng,1[Ng2|Na3|Naa|Nas|Nag|Na7 —7—7 S4,1 (542|543 i;

7 3

Thermos. 32,774 2 4,399 6 N5,1|N5,2|N53|N54|N55|N56|N57—F7 S51 552 (553 .3

GPS 38,960 2 6,193 6 7 3
- N6,1|N6,2|N6,3 | Ne4 | Ne5|N6,6 | N6,7 [— S6,1 56,2 56,3 [—
Motion 39,488 2 6,851 6
Garage 39,587 2 5,177 6 Fig. 2: Network and Sensors features matrices

Fig. 3: Network images with separated (left) and unified
(right) channels

metric describing a feature. If a sensor has only two
measures, NaN values are used to fill the last cell of
the row. For example, the weather sensor has three
columns filled by the values observed by its features
(see Table III), i.e. temperature, pressure, and humidity.
On the contrary, GPS has only longitude and latitude;
hence the third column is filled by NaN. Network
data is transformed into a 6x7x3 matrix, where each
cell contains a metric describing a feature. As shown
in Table III the selected network features are 42 and this
number has been tripled by the sampling and expansion
procedure previously presented. NaN values are used
to fill the remaining positions in the matrix. In both
matrices, values are converted in the range 0:255 to
be represented as pixel RGB intensity and NaN values
are converted to zeros. The matrices are now converted
into images using the Python library PIL by mapping
each sub-value of the matrix to the pixel RGB intensity.
Figure 3 shows the network matrix transformed into a
2D matrix with (top) separated channels (R, G, B) and
(bottom) unified color channel (RGB). Figure 4 shows
the same for the sensor data.

D. Remarks

The developed system, shown in Figure 1, efficiently
converts raw data into an ML-friendly format while
respecting the key design principle: the data sampling
and the methodology used to extract relevant metrics
in the sampled space, such as maximum, minimum,
average, and most frequent values, are flexible. The pre-
sented approach is not tailored to the considered dataset

Fig. 4: Telemetry images with separated (left) and
unified (right) channels
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and lays the foundation for the integration of additional
sensors and network features. The design principles of
the system ensure that it can easily adapt to other data
sources, making it a general-purpose solution for a wide
range of IoT and network data engineering challenges.
Moreover, the used data sampling, aggregation, and
image conversion techniques, allowed the reduction of
the ToN-IoT dataset from 20GB of raw data to 2 MB
of images.

V. ML MODELS

As described in Section IV, the data preprocessing
and engineering system generates images representing
the sensors and network state in a time window. This
motivation led to the development of two distinct CNNs
networks composed of standard CNN layers as Input,
Conv2D, MaxPooling2D, Flatten, Dense, Dropout, and
Output. While the network and sensor architectures
adhere to standard CNN layerization, there are some
differences between the two:

« Input layers: the input layers shapes correspond
to the input images shapes of 6x7 pixels for
the network and 6x3 pixels for the sensors. The
input shapes are three-dimensional due to the RGB
format of both images.

« Output layers: the output layers shapes are de-
signed to address the different CNNs tasks. The
output layer of the sensors CNN has a shape of
6x3, as it provides a prediction for each of the 6
sensors. The prediction can have a value of O (nor-
mal traffic), 1 (attack), or 2 (sensor not available).
The output layer of the network data has a shape
of 1x8, as it predicts the presence or not of each
of the seven different attacks considered in the
analysis. The attacks are those reported in Table II,
with the exception of MITM and Ransomware.

« Reshape layer: an additional layer is required in
the sensor CNN to convert the output shape from
1x18 to a 6x3 matrix where the activation function
is applied row by row, allowing for a separate
prediction for each of the 6 sensors.

VI. VALIDATION

The data processing system and the CNNs are tested
by splitting network and sensor data into training,
test, and validation sets using a 70-20-10 stratified
split, preserving the label distribution. After training
the network and sensor CNNs until the validation loss
stop to decrease (200 and 100 epochs, respectively),
confusion matrices were computed over the validation
set and accuracy, recall, precision, F1, false positive
rate, and false negative rate metrics are calculated. To
do this, the value “5” in the network’s confusion ma-
trix is considered negative, representing the “normal”
class, while all other classes representing attacks are

Confusion Matrix

True Label

Predicted Label

0:backdoor, 1:dos, 2:xss, 3:password,
4:ddos, 5:normal, 6:scanning, 7:injection

Fig. 5: Network Confusion Matrix of ML-IDS

considered positive. In the sensor’s confusion matrix,
class “1” is considered positive and “0” is considered
negative, while class “2”, which represents a sensor
that is off, has been removed. The network’s confusion
matrix is shown in Figure 5 while the the network’s
training curve is shown in Figure 6. From the training
curve, it can be observed that the model does not
exhibit overfitting to the training data until 200 epochs,
at which point the validation accuracy becomes con-
stant and the gap between the loss and validation loss
begins to increase. For brevity, the confusion matrices
and the training curve of the sensors are not shown.
The metrics extracted from the matrices are shown
in Table IV. Across all metrics, the performance of
the CNN network is excellent, with an Accuracy of
99.23%, meaning that it can predict correctly most
of the time. When it comes to Precision, this model
scores 99.28% while the Recall level is at 99.84%.
Therefore, it achieves both high levels in detecting
positive samples (FNR 0.16%) at the expense of in-
creasing the FPR (4.76%), meaning that there would be
more cases with false alarms than missing some attacks.
However, individual sensor CNNs perform differently
from others: GPS, Motion Light, and Garage Door
reach perfect scores on all metrics; others, such as
Fridge and Weather, have high FPR and perfect Recall,
while the Thermostat, with with 16.83% FPR has sub-
optimal Recall score.

VII. CONCLUSION

Non-tailored data preprocessing and engineering com-
bined with CNNs have shown promising performance,
especially on network data and certain sensor data.
However, the sensors CNN showed some performance
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CNN Acc. Prec. Rec. F1 FPR FNR

Netw. 99.23 | 99.28 | 99.84 | 99.56 | 4.76 0.16
GPS 100 100 100 100 0 0
Fridge 93.25 | 90.95 100 95.26 | 20.94 0
Garage 100 100 100 100 0 0
Weather | 93.98 | 93.60 100 96.69 50.0 0

Thermos. | 91.23 100 83.17 | 90.81 0 16.83
Motion 100 100 100 100 0 0

TABLE IV: CNNs Performance Metrics (%)

inconsistencies, indicating that work on data prepro-
cessing and model optimization needs to be improved.
One of the main strengths of such an approach is
that it can transform different forms of information
into images to extract relevant temporal features from
the sampling interval, without the need for customized
extraction processes. This integrated feature extraction
approach is highly flexible, ensuring smooth adaptabil-
ity to different new data collections. It is worth noting
that the sensor data used in this study was fictitious
and the next step necessitate the use of reals sensors
data, which includes not only captures, but also sensor
state details, for a more comprehensive analysis that can
help resolve the observed discrepancies. Furthermore,
the significance of these results lies not only in the
successful application across different data types, but
also in the fact that basic CNNs were used. This
underscores the potential for significant improvements
with more advanced DNN models.
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