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Abstract. The evolution of the sixth generation (6G) of wireless will
enable the full-scale deployment of systems of cyber-physical systems
(CPS) such as autonomous vehicles, robots, and drones. Currently, a
paradigm shift in security and trust-building approaches for 6G is being
discussed within the communications and networking communities, to
tackle novel and more sophisticated behavioral attacks of malicious CPS
agents. As an example, such autonomous agents will use vast amounts of
data – generated from and exchanged amongst heterogeneous network
devices – for artificial intelligence-driven decision-making. As a result,
standard device authentication approaches and current agent reputation
models will not suffice for trust building; the verification, traceability,
and trustworthiness of the exchanged data themselves become critical
issues. In this paper, we highlight related open issues using as an exam-
ple a specific behavioral attack in a vehicular ad-hoc network (VANET),
to open up the broader discussion regarding potential trust issues in
6G CPS networks. In light of this, we propose a comprehensive frame-
work for trust and reputation management in 6G. We discuss alternative
framework architectures and provide high-level details of the framework
components with involved technologies.

Keywords: Cyber-physical systems · 6G · trust and trustworthiness
· bogus information attacks · machine learning · trust and reputation
management.

1 Introduction

The rapid development of communication technologies in recent years paves
the way for the evolution of 6G networks, which are expected to contribute to
the interconnected world of the future. These future networks will be deployed
in various application domains such as smart cities, smart healthcare, indus-
trial automation, and more, forming cyber-physical systems (CPS) where agents
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seamlessly interact with both the physical and digital worlds and are also known
as multi-agent cyber-physical systems [16]. In such a dynamic ecosystem, au-
tonomous agents, vehicles, robots, and other intelligent devices will be able to
communicate and make decisions independently of humans. However, the in-
creased connectivity and interaction between autonomous entities will open up
novel potential security risks and challenges [30,34].

One key challenge stems from the fact that these agents will exchange data
continuously, including regarding their physical states such as location, speed, ac-
celeration, and environmental conditions, to assist in making accurate real-time
decisions. Multiple challenges and opportunities arise as a result. For example,
apart from the obvious location privacy issues, a key challenge concerns how to
verify that the exchanged information is accurate, not modified or intentionally
falsified as it propagates through multiple agents. To capture related issues, the
ITU 2018 report [26] defines trustworthy networking as a set of methods to pro-
vide reliable and secure communications among any pair of network elements
that have trust relationships. Subsequent works [22] identified six 6 attributes
for trustworthy systems, namely resilience, security, privacy, safety, reliability,
and availability. In addition, a vast amount of literature is dedicated to trust-
worthy AI [21], while high-level views of the requirements for 6G trust were
also presented [32]. Without robust trust-building mechanisms, malicious agents
can conduct adversarial attacks, inject false information that leads to privacy
concerns, or cause potentially widespread corruption across the network.

In this paper, we take the position that trust and reputation models should
use both views of the physical world – as provided through sensing and the lower
communication layers – and the cyber world, as provided through semantics and
upper communication layers, unlike existing trust and reputation models. To
highlight the importance of incorporating physical views in trust models, in a
preliminary investigation, we exemplify security attacks in VANETs, a typical
example of CPS where network operations take place in a highly dynamic en-
vironment. The mobility of vehicles and constant changes in network topology
highlight the need for trust and reputation management to maintain network
security. One of the common threats in VANETs is the bogus information at-
tack [14] or a false data injection attack [9], where rogue vehicles send false data
with the intention of causing delays, traffic congestion, accidents, or gaining pri-
ority. As a proof of concept, we discuss the practicality and effectiveness of a
multi-view trust framework incorporating location and speed information.

Motivated by the previous discussion, we highlight the potential open issues
in 6G trust and trustworthiness and propose a novel framework for global trust
and reputation management (TRM). We present two potential architectural ap-
proaches that take into account cross-layer information from the physical layer
to the application layer, as well as sensing and semantic plane inputs.

The rest of the paper is organized as follows. In Section 2, we present our
preliminary investigation with VANETs, to motivate the follow-up discussion.
In Section 3, we discuss the new trends in 6G and describe the paradigm shift
in trust building and management to meet the evolving requirements of 6G net-
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works of CPSs. In Section 4, we present possible trust management framework
architectures with detailed descriptions of the framework components. In Sec-
tion 5 we conclude the paper and present future directions.

2 Experiments and Motivation

Along with the development of 6G networks, the need to expand VANETs is
also constantly increasing, leading to security risks. Attacks in VANETs focus
on different directions to undermine confidentiality, integrity, availability, iden-
tity, authentication, and non-repudiation properties [33]. Fig. 1 shows the net-
work stack layers including attack vectors classified as single-layer or multi-layer
attacks, along with the unique characteristics of each layer used for current de-
tection solutions. At each layer, we identify the features that can be abused by
adversaries to perform attacks but also be used by defenders to detect attacks
or abnormal behavior.

Fig. 1: Features and attack vectors in each layer of the network stack.

– Physical layer. In the study by Alzahrani et al. [4], received signal strength
indicator (RSSI) and angle of arrival (AoA) are used as trusted features to
determine the reliability of cooperative awareness messages (CAM) received
from adjacent vehicles. However, we note that the RSSI and the AoA have
been shown to be vulnerable to certain types of attacks, e.g., when using
analog array processing chains [29] as opposed to digital array processing [24].

– Network layer. Shamim et al. [35] used features such as packet delivery
ratio (PDR), routing overhead (ROH), throughput, packet loss rate (PLR),
packets generated, packets dropped, energy consumption in their collabora-
tive detection method of black hole and gray hole attacks.
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– Transport layer. Hassan et al. [17] used the features at the transport
layer to interpret the decision-making process of the random forest classi-
fier, thereby understanding the characteristics of different types of attacks in
VANETs. For example, “destination-port” represents the port number where
the packet will arrive, “flow-packets-sec” is the packet rate in a flow, and
“min-seg-size-forward” is the minimum segment size in the forward direc-
tion. However, it has been shown that destination ports could be vulnerable
to a certain type of attacks, such as web-attack, infiltration, and port scan
(PS) [23].

– Application layer. So et al. [28] calculated velocity, acceleration, and dis-
tance traveled values from GPS location information and then converted
them into plausible checks to detect anomalies. Several attacks on GPS lo-
cation have been identified, along with several mitigation methods [10,31]

To highlight the novel, complex security challenges in 6G networks of CPSs,
in this section, we illustrate a specific use case of anomaly detection in a VANET.
First, we use the Eclipse MOSAIC simulation platform [27] to set up different
VANET scenarios. Then, we examine the limitations of current approaches and
present a proposed solution using positioning and speed information to identify
a bogus information attack. As an example, an attacker attempts to broadcast
a fake message about obstacles on the current route using a type of vehicle-to-
everything (V2X) communication called decentralized environmental notification
message (DENM) to disperse vehicles away from the optimal route to gain an
advantage [19].

2.1 Scenario setup

Simulation framework. We used Eclipse MOSAIC [27] to develop a small-
scale attack scenario. This simulation framework allows for the realistic simula-
tion of vehicle communications, providing a controlled environment and entities
for testing different types of attacks and mitigation approaches. It also enables
the programming of applications for vehicles and roadside units (RSUs).

Simulation setting. The experimental scenario takes place in an urban set-
ting around the area of the ETIS campus in Cergy, France, with a simple road
topology, including a main route and an alternative route. One of the vehicles in
the middle of a convoy plays the role of an attacker, broadcasting fake DENM mes-
sages to notify about non-existing obstacles on the main route, causing vehicles
within a certain radius to redirect to an alternative (sub-optimal) route. During
the simulation, the system collects real-time data exchanged between vehicles
and infrastructure. The collected data includes information on location, speed,
and acceleration, and all communication is monitored for analysis.

Attack mitigation. We implemented a centralized system with a misbehav-
ior detection mechanism, specifically focusing on detecting bogus information
attacks within this scenario. The simulation system includes:
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Fig. 2: Illustration of simulation scenario including V2X communications:
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I).

– A centralized trust and reputation management system (CTRMS):
The system collects logs from the network and then transfers them to the
central server for storage and processing. The system includes a rule-based
anomaly detector and vehicle trust management, which is quantified as a
trustworthiness score to describe the truthfulness of the vehicle in the net-
work. The management model is shown in Fig. 2.

Fig. 3: Flowchart for rule-based detection of bogus information attack.

– Misbehavior detector: This module plays a role in analyzing the col-
lected data of vehicles in the network and finding anomalies, identifying
malicious vehicles. In the scope of this scenario, we implemented a simple
rule-based detection mechanism. This rule-based processing flow is described
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in Fig. 3. When a vehicle receives a DENM message from the network, it re-
quests CTRMS to check the sender’s trustworthiness. The system then ver-
ifies whether there are any abnormalities based on the collected logs and
identifies the location of the vehicles and the behavior (speed and movement
trends) of nearby vehicles. If any abnormalities related to the sender are
detected, the system will flag the sender as malicious, decrease their trust
score, notify the requesting vehicle, and take necessary measures. In this
scenario, to simplify, all vehicles start with a trust score of 1. Once a vehicle
is identified as malicious, its trust score will decrease to 0. Based on this,
vehicles receiving the DENM message will decide whether to change routes
according to the trust scores provided by the CTRMS system.

Fig. 4: Map visualization for two test cases (a) successful bogus information
attack successfully and (b) unsuccessful attack – detected and pre-
vented. The red marker indicates the malicious vehicle while the green markers
represent benign vehicles.

2.2 Analysis

We conducted experiments through three test cases: the first simulates an at-
tack without CTRMS, the second demonstrates the detection capability of the
CTRMS combined with a misbehavior detector, and the third highlights the
scalability issue of the system when there is a large number of vehicles in the
network. We measure the processing delay for each request at CTRMS.

– Case 1: Successful attack. Due to the lack of a trust framework, the
attacker can succeed in spreading bogus information about the optimal route
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Fig. 5: Vehicle speed graph for two test cases (a) bogus information attack
successfully propagated and (b) attack detected and prevented.

Fig. 6: Delay time measurement (maximum, minimum, average) for different ve-
hicle counts (8, 16, 32, 64, 128).
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to the neighboring vehicles, causing them to change to the alternative route,
shown in Fig. 4(a). In this toy example, the attacker’s gains correspond to
reaching the destination first, at around 200 seconds after departure, while
the other vehicles arrive within the time frame of 300 seconds. The impact
on vehicle speed is illustrated in Fig. 5(a).

– Case 2: The attack is detected and mitigated. With the CTRM sys-
tem deployed along with a misbehavior detector, the attack was successfully
detected. Through the trust score verification from the server, the decision-
making units on other vehicles will not make the rerouting decision, and the
attack was successfully mitigated, as shown in Fig. 4(b). As a result, the at-
tacker did not gain any substantial advantage, the speed graph is displayed
in Fig. 5(b).

– Case 3: Delay time measurement. We continue with the above scenario
but increase the number of vehicles in the network from 8 to 16, 32, 64,
and 128, respectively. The purpose of this task is to simulate varying traffic
densities in the network and, consequently, collect and analyze the process-
ing time and response time (delay time) from the centralized server to the
requested vehicles based on these density variations. The results are shown
in Fig. 6, including the maximum, minimum, and average delay times. We
notice that when the number of vehicles in the network increases, the server
processing and response time slows down significantly. This exceeds the max-
imum requirement for low latency services, typically requiring from 1ms to
10ms [13,20]. The low latency or ultra-low latency is an important element
in 6G applications such as self-driving cars, remote surgery, and industry
automation. In the context of VANETs, failing to meet the strictly end-to-
end latency requirements between vehicles, roadside units (RSU), and the
traffic control center (TCC) can lead to serious consequences. VANETs are
designed to support real-time communication for safety-critical applications
such as collision avoidance, lane change assistance, and accident prevention.

Through this above example, we can observe that implementing a central-
ized system to manage the trustworthiness scores of nodes in the network shows
both strengths and limitations in detecting anomalous behavior using a rule-
based approach. Firstly, the system’s dependence on application-layer data such
as GPS, speed, and acceleration information can reduce its effectiveness in iden-
tifying complex attack patterns. If GPS spoofing is successful, the attack cannot
be identified simply by this type of misbehavior detection mechanism. Secondly,
using static rules to identify attacks is limited due to the difficulty of handling
dynamic and evolving attack strategies, e.g., involving the coordinated action
of multiple malicious entities simultaneously (colluding adversaries). Thirdly, as
the size of the network increases, the rule-based system becomes less efficient
in processing real-time data, leading to detection delays and an increased like-
lihood of false positives and false negatives. Thus, although similar approaches
have been proposed in the literature [30], the limited trust and reputation model
used proves to be inefficient for 6G networks of CPSs, where a vast number of
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autonomous nodes will connect, communicate, and actuate, using large volumes
of complex data.

In such environments, the system must be able to adapt in real-time and han-
dle multi-layer and multi-modality data to identify threats accurately. ML/DL
models offer promising solutions for processing large amounts of data, identify-
ing complex attack patterns and anomalies, and enabling the detection of both
known and unknown (zero-day) attacks. Moreover, by combining the data from
multiple layers, sensing and semantic layers, ML/DL models can comprehen-
sively analyze the network and the node behaviors, providing the system with a
vital view to detect the increasingly diverse and evolving threats in 6G networks.

3 Security Challenges and Opportunities in 6G

Below, we enumerate several key challenges that will impact the design of secu-
rity solutions in 6G, notably with respect to latency, quantum resistance, and the
role of AI. Subsequently, we outline novel opportunities that will be brought up
in 6G, in terms of multiple security levels (quality of security), the introduction
of physical layer solutions, and integrated communications and sensing.

3.1 New Security Challenges in 6G Networks

Low latency, low footprint, scalable security: Ensuring robust security for
networks of autonomous agents requires operating within strict latency limits,
handling massive connectivity, and maintaining low energy consumption, low
footprint and low computational load, is an ambitious challenge.

Quantum resistance: Additionally, to remain secure against future threats,
systems must incorporate quantum-resistant cryptographic methods. This ap-
proach aligns with the newly standardized post-quantum cryptographic algo-
rithms established by NIST [5,6], the adoption of quantum-resistant algorithms
into IoT devices is challenging due to their limited resources.

AI and ML: The widespread deployment of AI and ML in 6G systems will
expand potential vulnerabilities, highlighting the need for defenses against ad-
versarial AI (such as data-poisoning attacks). Additionally, the energy footprint
needs to be contained to sustainable levels (green AI) and the AI outputs need
to be interpretable, and unbiased (XAI) [8].

3.2 Opportunities for strengthened security in 6G

Alongside these challenges, new security opportunities emerge, including decen-
tralized and democratized approaches to learning and computation, such as fed-
erated learning, the integration of sensing capabilities, and the ability to perform
context and semantics distillation. These advancements open doors to innovative
technologies, like physical layer security, as discussed below.
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The introduction of sensing in 6G: Positioning and radar sensing will be
default features in 6G networks [2]. This integration creates possibilities for using
sensing and positioning for integrity checks and anomaly detection that takes into
consideration the physical behavior devices. While Sybil cyberattacks in robotic
systems have been found using AoA [15], a number of techniques that use location
information as a second soft authentication factor have already been developed.
Trusted positioning will be a vital aspect of assessing the trustworthiness of
autonomous agents in 6G. However, this also introduces privacy challenges.

Quality of security (QoSec): In the long run, a safe and sustainable future
requires adaptability to maximize limited resources. In this context, adaptive se-
curity protocols and algorithms could be developed to adjust configurations and
parameters dynamically, based on multi-layered inputs from sensing, semantic,
and contextual data. QoSec offers a scalable security framework for CPS net-
works, providing varying levels of security and trust to meet the needs of future
networks.

Physical layer security: Within an adaptive, AI-driven security framework,
PLS solutions [12], which leverage physical phenomena for security, are envi-
sioned as complements to post-quantum cryptography, enhancing 6G’s trust-
worthiness and resilience. PLS could enable secure keyless communication or
the generation and distribution of symmetric keys through wireless channel
properties. We will be able to systematically make use of such opportunities
in 6G thanks to channel engineering and controllability (e.g., with the use of
meta-surfaces, drones for multi-hop networks, and very narrow beamforming).
Additionally, PHY and hardware layer authentication, e.g., utilizing physical un-
clonable functions and localization as a second-factor authentication, can allow
for rapid, continuous verification of legitimate users, minimizing the need for
upper-layer processing.

3.3 Paradigm Shift in Security for 6G Networks

The development of the new generation of networks has promoted the transition
from a network of connected things to an intelligent network, where agents have
more autonomous capabilities and more interactions with each other. However,
without TRM systems in multi-agent networks (MAS) or IoT, such interactions
will not ensure trustworthiness and will pose many security risks [36]. There-
fore, 6G networks need to be designed with inherent trustworthiness to improve
security effectiveness and enhance privacy protection capabilities [18].

Trust and trustworthiness: The behavior of devices, agents, and systems
must be considered holistically when establishing trust and assessing trustwor-
thiness. For a trustworthy 6G, multiple layers of trust must be guaranteed. While
ongoing discussions continue, it is evident that a secure 6G network must ensure
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trust in both the AI intelligence and the infrastructure, including sensing, com-
munication channels, and data processing. The initial anchors of trust can be
reduced to trusting at a highly abstract level: (i) The sensing (radar, RF, cam-
era, lidar, etc.) that gathers raw or processed data (high precision localization
information is especially crucial in 6G) and drives actuation; (ii) The platforms
for computation and processing (including learning and optimization) at various
network nodes (on devices, edges, and core networks); (iii) The communication
links that transport data and authenticate agents and devices, offering assur-
ances of confidentiality, integrity, authentication, and availability; (iv) The AI
algorithms that define the actions of autonomous agents, devices, and systems
based on data inputs and sensor readings.

In summary, 6G will be the first generation inherently built on AI, connect-
ing intelligent and autonomous cyber-physical systems, digital twins of physical
entities, and the metaverse. This integration of the physical, digital, and hu-
man realms signifies a new era where the physical properties of interconnected
systems are essential for security.

4 Trust and Reputation Management Framework

In 6G networks, AI is expected to be native, meaning it plays a vital role in the
network infrastructure as a fundamental component of the operations, adminis-
tration, and management process across all layers of the system [1]. A high-level
perspective on the components and factors maintaining trustworthiness is pre-
sented in Fig. 7. The data plane, control plane, and sensing plane are accountable
for data processing, network management, and environmental monitoring. The
data plane handles forwarding and routing packets in the network, using AI
to actively monitor data flows, identify inconsistencies, and automatically flag
them, thus enhancing data security and integrity. The control plane manages
routing decisions and overall network operations. AI enhances the control plane
by offering real-time analytics and adaptive decision-making algorithms that
continuously evaluate the trustworthiness of network entities such as routers,
switches, or RSUs in VANETs. The sensing plane gathers data from the physical
environment through sensors (e.g., GPS, speed, acceleration) and other contex-
tual inputs. AI enhances trust at the sensing plane by validating sensor data
in real-time, identifying anomalies, and quickly detecting faulty or compromised
sensors. This reduces the risk of false information entering the network, improves
sensor accuracy, and minimizes potential vulnerabilities. Besides, semantics is a
key topic emerging in 6G with the semantic plane performing signal processing,
and information filtering across all layers of the protocol stack by leveraging ML
algorithms deployed on edge and core cloud platforms [25].

One of the critical challenges is how to quantify trustworthiness within a net-
work. In this section, we present two possible approaches for measuring trustwor-
thiness through the idea of the TRM framework. These frameworks play a crucial
role in analyzing historical data, evaluating the behavior of network entities, and
real-time assessment through the integration of AI-based techniques. The first
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Fig. 7: High-level overview of trustworthiness in 6G.

one is a multi-layer trust management system, as described in Section 4.1, where
a global TRM serves as the highest authority, aggregating trust from all layers
through their respective local TRM. The local trust evaluation is supported by
ML/DL algorithms, which analyze features at each corresponding layer. On the
other hand, the second one is a multimodal attention fusion approach, as out-
lined in Section 4.2, which leverages ML/DL to process and analyze data, extract
the most important features at each layer, and synthesize them through a fusion
module to support the process of assessing trustworthiness. This approach pro-
vides a comprehensive view of context and multiple behavior aspects, making
trust assessments more reliable and accurate.

4.1 Multi-layer trust and reputation management framework

This framework is designed to maintain network security by combining multi-
layer data from physical layer (PHY) signals and the information from the upper
layers, applying ML and DL techniques to improve the capability of detecting
attacks or misbehavior while enhancing the system’s robustness. In Fig. 8, we
present our first possible framework architecture, which is based on a multi-layer
approach. The general framework architecture includes multiple TRM modules,
each being responsible for collecting and processing data captured at each re-
spective layer from PHY to higher network layers. Each layer plays an important
role in the process of detecting potential attacks by providing unique features
and observations at that layer to the inference module integrated with ML/DL
models for analyzing complex attacks, handling vast amounts of data in real
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Fig. 8: Multi-layer architecture for TRM framework.

time, identifying subtle deviations in behavior that traditional rule-based sys-
tems often miss. At each layer, we propose to implement a specific local TRM
based on the decision results from the inference module. Next, a global TRM is
deployed to aggregate the decision from all local TRMs and compute an overall
trust score for each node or vehicle. Depending on the nature of the attacks, a
weightage vector can be applied to prioritize the decision of a particular local
TRM. This multi-layer TRM architecture provides a holistic view and compre-
hensive trust score across the entire network while ensuring trust evaluation
according to the data type and attack vector characteristics of each layer. The
flexibility of this architecture is expected to be compatible with many types of
cyber-physical systems while ensuring robustness in various contexts.

By combining the general model and the specific use case in the context of
VANETs, Fig. 8 emphasizes the need for multi-layered security and trustworthi-
ness in future autonomous and interconnected systems.

4.2 Multimodal attention fusion approach

Because of the variety of data types of wireless communication characteristics,
it is not appropriate to apply a specific ML/DL algorithm to calculate trust.
We propose to develop and deploy additional planes including communication,
sensing, and semantic planes to collect further information from the environment
and correlate them with the data collected from the network. For example, the
data collected in VANET can include GPS coordinates, velocity, acceleration,
weather sensor data, camera images from the sensing plane; signal strength,
packet transmission rates from the communication plane, and the meaning and
context behind the data being transmitted from the semantic plane. Therefore,
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Fig. 9: Multimodal attention fusion architecture for TRM framework.

we propose to use a multimodal approach [7] which can use multiple types of
input data for processing and analysis, providing a comprehensive view and
contextual understanding, which has been applied and researched in security
solutions [11,3]. Fig. 9 depicts our proposed framework based on the idea of
combining the attention mechanism and multimodal models. In this multimodal
security framework, TRM can benefit from the attention models by focusing
on trustworthiness data at each layer. Unlike the architecture presented in Sec-
tion 4.1, the main idea of this approach is to utilize the attention mechanism to
highlight key features at each layer, and then combine (fuse) the features into a
unified representation based on the correlation among features. This allows the
model to consider multiple perspectives simultaneously, increasing the accuracy
of decision-making. The proposed framework includes the following components:

– Data collection and attention to various layers: The model applies
attention to the data at each layer, identifying and prioritizing the most rel-
evant information that is most important for a particular task. For example,
with the task of detecting attacks such as jamming or spoofing at the PHY
layer, the attention model could focus on specific features from a diverse set
of data collected at the physical layer such as signal strength (RSSI), signal-
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to-noise ratio (SNR), bit error rates (BER), channel state information (CSI).
By applying the attention mechanism, the model can focus on specific signal
patterns that indicate fake signal transmission or jamming attempts.

– Fusion module (multimodal models): Once the important features at
each layer are weighted using the attention mechanism, all features will be
aggregated into a unified representation based on their correlation. This al-
lows the model to consider multiple perspectives and contexts, thus detecting
complex, multi-vector attacks.

– Final decision-making: After synthesizing the attention-weighted features
from multiple layers, the model makes predictions or other decisions. The
trust scores of nodes in the network are calculated based on insights from in-
formation across multiple layers. This allows for comprehensive and accurate
decision-making.

The proposed framework is expected to form an effective trust and reputation
management solution and enhance the ability to detect sophisticated, multi-
layered attacks by fusing attention-weighted features from different layers of
the network stack. In addition, combining it with AI-based methods will help
improve the system’s resilience against both known and unknown attack vectors
in 6G networks.

5 Conclusion

In this paper, we introduced a global trust and reputation management frame-
work for 6G networks through two possible architectural approaches, a multi-
layer approach and a multimodal attention fusion approach. The proposed multi-
modal attention fusion framework is expected to enhance security in multi-layer
networks by integrating attention mechanisms with a global trust and reputa-
tion management system. It is especially suitable in the context of 6G networks
where massive connectivity and ultra-low latency, high security, and reliability
are required. The scalability of the multimodal fusion approach allows it to han-
dle vast amounts of collected from numerous entities across multiple network
layers. Integrating a global TRM system will further enhance decision-making
by continuously adjusting security responses based on the behavior, trustworthi-
ness, and past actions of network entities. Based on the ideas proposed in this
study, some potential directions of TRM framework development include:

– Development of a practical TRM framework: Since implementing trustwor-
thiness in technical systems is still in its early stages, the next phase will
focus on building a real-world TRM framework, where ML/DL algorithms
play a crucial role in handling and analyzing data across multiple network
layers. Besides, it also needs to ensure fairness and interpretability in the
decision-making processes of these algorithms, as transparency is essential
for trust in autonomous systems. Additionally, the developed framework will
prioritize improving detection accuracy for anomalies while minimizing false
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positives. This will involve refining the ML/DL models to better differen-
tiate between normal variances in behavior and actual malicious activities,
ultimately leading to a more robust and dependable TRM framework.

– Define and develop trust scoring mechanisms for the entities and their con-
nections within the network: These mechanisms should be flexible and able
to dynamically and continuously update based on changes in the entities’
behaviors, enabling a more adaptive and sustainable trust management sys-
tem.

– Considering the practical applicability and scalability of the system, deploy-
ing the TRM framework in large-scale cyber-physical systems presents a
significant challenge. It will need to ensure scalability, meet latency require-
ments, and operate within resource constraints while maintaining accurate
anomaly detection capabilities. Therefore, it is essential to implement real-
istic scenarios that can provide insights into the framework’s performance
across diverse conditions and environments. These scenarios will enable fine-
tuning of the model to suit the specific requirements of each system.
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