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Minimizing the Age of Missed and False Alarms in Remote
Estimation of Markov Sources

Jiping Luo
Dept. of Computer and Information Science
Linkoping University, Sweden
jiping.luo@liu.se

ABSTRACT

We consider the remote estimation of a discrete-state Markov source
with normal and alarm states. Data significance is revealed via two
semantic attributes: 1) Erroneously announcing a normal state at
the destination when the source is actually in an alarm state (i.e.,
missed alarm error) incurs a significantly higher cost than falsely
announcing an alarm state when the source is in a normal state (i.e.,
false alarm error). 2) Successive reception of an estimation error
may cause significant lasting impact, e.g., maintenance cost and
wrong operations. Motivated by this, we assign different costs to dif-
ferent estimation errors and introduce two new age metrics, namely
the Age of Missed Alarm (AoMA) and the Age of False Alarm (AoFA),
to account for the lasting impact incurred by different estimation
errors. We aim to achieve an optimal trade-off between the cost
of estimation error, lasting impact, and communication utilization.
The problem is formulated as an infinite-state Markov decision
process (MDP). We show that the optimal policy exhibits a switch-
ing structure, i.e., triggering transmissions only when the AoMA
or AoFA exceeds a threshold. Numerical results underscore that
our approach significantly reduces the amount of less important
information transmitted in the networks.

CCS CONCEPTS

« Networks — Network performance modeling; Network per-
formance analysis.

KEYWORDS

Semantic communications, remote estimation, Markov source, age
of information, data significance
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1 INTRODUCTION

Efficient remote state estimation is the key to various networked
control systems (NCSs) [7, 18, 27]. A fundamental question is how
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to achieve an optimal trade-off between estimation performance and
communication cost [1, 2, 24]. This is often done through various
metrics that capture the value (semantics) of information, thereby
reducing the amount of inefficient data transmissions [5, 6, 10, 19].
Accuracy and freshness, usually measured by distortion and the
Age of Information (Aol) [9, 26, 28], respectively, are two dominant
semantic attributes in the remote estimation literature. Despite
significant efforts, they are inefficient in Markovian models due to
the ignorance of data significance and source evolution [10, 17].

Several metrics have been introduced to address the shortcom-
ings of Aol. The Age of Incorrect Information (Aoll) [3, 15] captures
another semantic attribute — lasting impact, i.e., the cost of con-
secutive estimation errors. This attribute is significant in many
applications. For instance, successive reception of erroneous sta-
tus updates from a remotely controlled drone can lead to wrong
operations or even crashes. However, Aoll might not suffice in our
problem since treats all source states equally, i.e., content-agnostic.
This egalitarianism results in inadequate transmissions in alarm
states but excessive transmissions in normal states. This gives in-
centives to content-aware metrics.

More recently, there have been some initial efforts to exploit
content awareness (i.e., state-dependent significance) in remote esti-
mation systems [14, 17, 20, 22, 25]. The authors in [25] assigned a
quadratic age variable for the alarm state and a linear age variable
for the normal state, thus punishing more on the age of the alarm
state. However, this method inherits some of the shortcomings of
Aol The Version Age of Information (VAoI) [20] tracks content
changes in the age process, which becomes more relevant in sys-
tems sensitive to error variations. The most relevant metric that
directly captures the data significance is the cost of actuation er-
ror (CAE) [14, 17, 21, 22], which assigns different costs to different
estimation errors. Intuitively, a missed alarm error incurs a signifi-
cantly higher cost than a false alarm error. Theoretical results were
presented in [14], which showed that the optimal policy specifies
a deterministic mapping from estimation error to transmission
decision. However, the lasting impact is ignored.

The main contributions of this work are as follows: 1) We intro-
duce two new age metrics, namely the Age of Missed Alarm (AoMA)
and the Age of False Alarm (AoFA), to account for the lasting im-
pacts of missed alarm errors and false alarm errors, respectively.
The AoMA and AoFA evolve dependently, allowing them to dis-
tinguish between estimation errors. 2) We show that the optimal
policy is of a switching-type, i.e., triggering transmissions when the
AoMA or AoFA exceeds a given threshold. Moreover, we give a
sufficient condition under which the optimal policy degenerates
from the switching-type to the simple threshold-type, i.e., identi-
cal thresholds. 3) For numerical tractability, we truncate the age
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Figure 1: Remote estimation with prioritized states.

processes and show the asymptotical optimality of the truncated
problem.

2 SYSTEM MODEL
2.1 Remote Estimation Model

We consider a remote estimation system shown in Fig. 1. The model
consists of the parts listed in the next subsections.

2.1.1  Source. The information source is modeled by a two-state,
discrete-time Markov chain (DTMC) {X; };>1, where X; € {0, 1} is
the state variable, t > 1 is the time index. At each slot ¢, the source
resides in either state 0 (normal, or low-priority) or state 1 (alarm, or
high-priority). It is worth mentioning that states here can represent
either quantization levels of a physical process or abstract statuses
(e.g., operation modes, component failures, or abrupt changes in
system dynamics, etc.) of a system'.
The state transition probability matrix of the DTMC is

_|p P

o-[; 3]

where p = 1-p,§ = 1-4q, Qij = Pr[Xp+1 = jIX; = i] is the

probability of transitioning from state i to state j between two

consecutive time slots. To avoid pathological cases, we assume Q is

irreducible,ie., 0 < p,q < 1. ADTMC is called symmetricif Q = QT.

Otherwise, the chain is called asymmetric. Moreover, we call a chain

positively correlated if it is more likely to stay in the current state

than to change state, i.e., p < §. The chain is negatively correlated
ifp>gandisiidifp=q.

1)

2.1.2  Channel. The channel state H; € {0, 1} follows a Bernoulli
distribution with a mean of ps. Here, H; = 1 denotes the successful
reception of a data packet at time ¢, and H; = 0 denotes a packet
drop. Upon successful reception, the receiver sends a one-bit ac-
knowledgment (ACK) packet to the sensor. Otherwise, a negative
ACK (NACK) signal is feedback to indicate transmission failure. We
assume that ACK/NACK packets are delivered instantaneously and
error-free. Therefore, the sensor knows precisely the estimate X;
at the receiver.

2.1.3 Sensor. The sensor sequentially observes the process and
decides whether or not to transmit the source state. We assume
that the decision made in the current time slot will take effect at the
beginning of the next time slot, not immediately. Specifically, if dur-
ing the current time slot ¢, the sensor chooses to update the source
state, a new packet X;;1 is sampled and transmitted at the begin-
ning of slot ¢ + 1. This action delay accounts for several practical
considerations such as measurement delay and system processing

!Examples include Markov jump systems[4], where the system has a finite number of
operation modes governed by a DTMC. Each mode corresponds to a specific type of
physical process or a particular group of system parameters.
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time [8]. Let A; € {0, 1} denote the decision variable, where A; = 1
means transmission while A; = 0 means no transmission.

The information available at the sensor at each decision epoch ¢
is

I} = {X1.6, X1, Arie—1)- (2)

The sensor chooses an action A; according to some transmission
rule my, i.e.,

Ar=m(I}) = 7t (X1, X1t Ar:t-1).- (3)

Notice that 7; can be either deterministic, selecting an action in a
given state with certainty, or randomized, specifying a probability
distribution on the action space. The collection = = {m;};2, is
called the transmission policy.

2.14  Receiver. Let Y; € {0, 1, E} denote the output of the channel
at time ¢, where the symbol & denotes no packet received. The
information available at the receiver at each time ¢ is

I? = {Y14, Hys }. 4

However, it is challenging to reconstruct source states using under-
sampled measurements. The estimation rule g; depends on the
source statistics, the channel condition, and the transmission pol-
icy. In this paper, we assume that the receiver does not know the
source pattern and updates its estimate using the latest received
measurement?[14, 15, 17], i.e.,

Xt = gt(ItZ) = XU,,,
where Uy =max{1 <7 <t:Y; # E}.

©)

Remark 1. The Aol in such systems is defined as A?OI =t-U.
However, Aol ignores both the source evolution and the information
content. Consequently, a large Aol does not necessarily mean poor
estimation performance, as the system may remain synced for some
time, and vice versa.

2.2 Semantics-Aware Age Metrics

Since the source states are not equally important, we distinguish
the estimation errors by the following two types.

e False Alarm (FA): It occurs when X; = 0 and X =1,
indicating an unnecessary alarm triggered by the receiver.
While somewhat less important, FA errors may incur extra
operation or maintenance costs.

e Missed Alarm (MA): It occurs when X; = 1 and X; = 0,
indicating a failure to detect an alarm by the receiver. MA
errors are more crucial and thus higher penalties.

Then, we introduce two new age metrics, namely the Age of False
Alarm (AoFA) and the Age of Missed Alarm (AoMA), to quantify
the lasting impact® of the FA and MA errors, respectively. The age
processes evolve as follows

FA _
At+1 -

(6)

otherwise.

{AEA +1, i X1 =0, % = 1,
0.

2 Assuming the availability of source statistics at the receiver side, one may consider
other estimation rules such as MMSE and Maximum likelihood estimation (MLE)[12].
3Staying in an erroneous state for an extended period may lead to substantial ramifi-
cations, not mere accumulated costs during this period[15, 22].
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Figure 2: Three-dimensional DTMC representing {S;};>1.

AMA L1 i X =1, X4 =0,
AMA - { t t+1 t+1 (7)

A 0, otherwise.

Let S; = (Xt,f(t, AI,VLA, AEA) denote the system state at time ¢.
Since AI;A AIQAA cannot simultaneously be non-zero, they can
be formed in a compact way as

and

FA MA
A A+ L xy=aone @)

where 1.y is the indicator function of an event. For simplicity, in

0= 1ix, %)=01))

the rest of the paper, we shall use S; = (X;, X, Ap) as the system
state. The state space is given by

S ={(0,0,0),(1,1,0)} U {(0,1,6), (1,0,8) : § > 1}, )

where Sgynced = {(0,0,0),(1,1,0)}, Spa = {(0,1,8),6 > 1}, and

Sma = {(1,0,6),8 > 1} are the set of synced states, the set of

FA errors, and the set of MA errors, respectively. Note that S is a

countably infinite set because the ages are possibly unbounded.
The cost of being in state S; is defined as

¢(St) = pAYS + (1= HAS

(10)
where f € (0, 1] represents the significance of MA errors. Recall
that action A; will take effect at the beginning of slot ¢ +1. Therefore,
we can only evaluate the effectiveness of an action after receiving

ACK/NACK packets, i.e., knowing the outcome of Sy41. The (per-
step expected) cost of taking an action A; in state Sy is

c(Ss, Ar) = E{c(St+1) IS¢, At}

= (Pl x=0) + (1= PL(x, %)=(0.1))) Bt

(11)
where the expectation is taken over the channel uncertainties, the

source statistics, and the (possibly) random actions.

Remark 2. The cost (10) assigns different costs and age penalties
for different estimation errors. Notice that Aol and Aoll [15] only have
one age process. Therefore, they cannot distinguish between estimation
errors and are not applicable in some applications such as quickest
change detection [11] where a certain state holds more interest.

2.3 System Dynamics

Take an action a in a certain state s = (x, X, §), the system state will
transition to s’ = (x’, %/, §”) according to the following probabilities

Ps ¢ (a) = Pr{(x’,%")|(x, %), a}Pr{8"|x", %", 6}, (12)
where

Pr{(x",)|(x, %), a} =
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Qikps, a=1(x%)=(ij), (x". ") = (kk).k # ],

Qikpr, a=1(x%)= (1)), (x",2) = (k ).k #j,

Qijs  a=10x%) =()), &) =), (13)

Qik»  a=0,(x%) =()), (x"2) = (k)

0, otherwise.
1, x"#%,8=5+1,

Pr{§'|x’,%',8} =41, x' =%",8 =0, (14)

0, otherwise.

where pyr = 1 - ps, i, j,k € {0,1}. Fig. 2 shows the evolution of
process S; under the always-transmission policy, i.e., A; = 1, Vt > 1.

3 PROBLEM FORMULATION

Given a transmission policy 7, the average content-aware estima-
tion error is defined as
1 T
C(m) £ limsup — > B [e(S1, Ar)[S1 = s1], (15)
T—o0 T
t=1
where E” represents the conditional expectation, given that policy
7 is employed with initial state s; = (0, 0,0).
Similarly, the transmission frequency (average number of trans-
missions) is defined as
1 T
F(m) £ limsup—Z:IE!‘,”[]‘“(St,At)LS‘1 = sl]’ (16)
T—oo T —
t=1
where f(S[, At) =1 {A;#0}-
Given the communication cost (i.e., the cost of joint sampling and
transmission) A for each transmission, the sensor aims to achieve a

desired balance between the communication cost and the estimation
performance. Hence, the sensor’s global objective function is

T
LAm) 2 li;n sup % Z E” [IA(St,At)|51 =5,

C(r) + AF (),

where I1(S;, As) £ ¢(St, Ar) + Af(Ss, Ar).
The sensor aims to determine the A-optimal transmission policy
ﬁ/"{ to minimize (17), i.e.,

LA = inf LA (n),
mell

(17)

(18)
where IT is the set of all admissible policies.

Remark 3. Problem (18) is an average-cost Markov Decision Pro-
cess (MDP). However, it encounters computing and memory challenges
due to the infinite state space and (possibly) unbounded per-step costs.
The main approach to remedy these difficulties is to reveal favor-
able properties of the optimal policy, thereby restricting the policy
searching space.

Definition 1. A policy is called A-optimal if, for a given A > 0, it
attains the infimum in (18).
4 MAIN RESULTS
4.1 Optimality of Switching-Type Policy

In the sequel, we develop structural results of the A-optimal pol-
icy. Problem (18) can be characterized by an MDP with a 4-tuple
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(S, A, P, lA). Herein, A (s, a) is the (per-step) cost function, and P is
the system transition probability function given in (12). To address
the “curse of dimensionality" and the “curse of memory", we intend
to derive the structure of the A-optimal policy and characterize the
limiting behavior of the induced Markov chain.

We first show in the following proposition the existence of a
A-optimal policy. Moreover, it allows us to restrict attention to
stationary deterministic policies.

Proposition 1. Suppose that Q is irreducible. Then, there exists a
function h* such that
A Ags (A A
L+ @) =min(}a)+ ) Py@P (D) (19)

foralli € S, where L is the minimum average cost. Furthermore,
the A-optimal policy m; is stationary deterministic given by

(i) = arg;nin{lﬂ(i, a) + Zj Pij(@h* (j)rieS. (20

Proor. Please see Proposition 2 in [13]. O

Remark 4. One may try to apply value iteration methods to solve
the Bellman’s optimality equation (19). However, it is not applicable
in practice as we cannot iterate over infinitely many states. Further-
more, even with such an optimal policy at hand, it is impossible to
store all state-action pairs due to memory constraints at the sensor.
Deep reinforcement learning (DRL) techniques can partially address
these challenges, however, at the cost of suboptimality and lack of
interpretability.

We first address the “curse of memory". Fortunately, the fol-
lowing important theorem shows that the A-optimal policy has a
simple switching-type structure facilitating the policy storage and
algorithm design.

Assumption 1. The source is positively correlated*.

Definition 2. We define the ordering s; < s3 for s1,s2 € Saoma =
SsyncedUSma if the age satisfies 0 < §; < . Similarly, the ordering
for s1,s2 € Saora = Ssynced U Sgp is sy <52 if 0 < 81 < 6o

Theorem 3. The A-optimal policy has a switching-type structure.

That is, for any given orderings— < s < sy,5-, 8, S+ € Saoma (0r SaoFA),

ifﬂ'}[(s) =1, then 77:;[(3+) =1 foralls, > s. Also, ifﬂ/’{(s) =0, then
77,';(3_) =0 foralls_ <s.

Proor. Please see Theorem 1 in [13]. o

The sensor initiates a transmission only when the current AoMA
exceeds the threshold § or the AoFA exceeds the threshold §. There-
fore, the sensor only needs to store two threshold values instead of
all possible state-action pairs, thus remedying the “curse of mem-
ory". We note that the threshold § for AoMA does not necessarily
equal the threshold § for AoFA. We will show that identical thresh-
olds are generally suboptimal (see Section 4.3).

4This is a common assumption in the literature [16]. Analysis without this assumption
can be found in [13].
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4.2 Performance of Switching-Type Policy

In the sequel, we present analytical results of the switching-type
policy. It is worth mentioning that our approach can differentiate
between the synced states—a feature rarely considered in the litera-
ture. This feature offers significant performance benefits since the
synced states are not equally important. For instance, if the sensor
triggers a transmission in the synced state (0,0, 0), then there is a
high probability that the system will directly transition to another
synced state (1, 1, 0), thereby forcing the system into low-cost FA
errors. In outline, our approach allows us to distinguish between
the following four cases: (i) always transmission, i.e., § = § = 0, (ii)
no transmission in synced states, i.e., 58>1, (iif) transmitting in
state (0,0,0), i.e., §=0,6>1and (iv) transmitting in state (1, 1,0),
ie,6>156=0.

The main result of this section follows. Proposition 2 establishes
the stationary distribution of the switching-type policy for the
dominating case 8, d > 1. Further, theorem 4 provides the closed-
form expressions for the average cost associated with this case. The
analysis for the other three cases is carried out similarly (see [13]).

Proposition 2. Suppose that the thresholds for AoMA and AoFA
are 6,0 > 1. Then, the DTMC in question is irreducible and admits a
stationary distribution given by

vo00 = To(a,b), vi,1,0 =T1(a,b), (21)
—k—1 -
Pq” V0,00 1<k<$,

V0k =\ 5-1,7. \k=8 : (22)

Lok {P‘?5 Yapp)*vo00. k> 4.
~k—1

qap” V1,10 1<k<$,

Vourk =14 o (23)

oLk {qpa_l(PPf)k_‘sVl,Lo, k> 4.
where

To(a,b) = __pbo) . (29)
(1+a(1))pb(d) + (1 + b(1))ga(d)

I'(a,b) = - ga(®) R (25)
(1+a(1))pb(8) + (1+b(1))ga(d)
_g0-1 B ) ~5-1

a =L o), ai= 2 )
1- 1-gpys
q(1-p°") gp°!

b(1) = —————=+b(9), b(d) = ———. (27)
1- 1-ppy

Proor. Please see Proposition 3 in [13]. O

_ Theorem 4. For a given switching-type policy & with thresholds
8,0 > 1, the average costs are

C(n) = Bpy(q. 5)voo,0 + (1 = Bqy(p, 8)vi v, (28)
F(m) = a(8)vo0,0 + b(8)v1,1,0, (29)
L) = M) + AFA (), (30)

where a(8), b(8), vo,0,0, and v1,1,0 are given in Proposition 2, /(p, §) =
1-[p+(1-p)81p°~" | lppr+(=ppy)81p°!
(1-p)? (1-ppr)?

Proor. Please see Theorem 2 in [13].
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4.3 Suboptimality of Threshold-Type Policy

The following theorem shows that, when the source is symmetric
and the states are equally important, the optimal policy degener-
ates from a switching-type to a simple threshold-type. This result
underscores that existing results on Aoll can be viewed as special cases
of our approach (see [15]).

Theorem 5. Suppose that the source is symmetric and the states
are equally important, i.e., p = q, § = 0.5. Then, the optimal policy
has identical thresholds.

ProoF. Please see Theorem 3 in [13]. O

Remark 5. The assertion of Theorem 5 fails to hold when the
source is asymmetric or the states are prioritized. Since our approach
covers the single age process case, it implies that the threshold-type
policy is generally suboptimal. Intuitively, a single threshold cannot
distinguish between different types of errors and different synced
states. Also, a threshold policy with § = 0 is nothing but a continuous-
transmission policy.

4.4 Asymptotical Optimality

As mentioned earlier, it is impractical to iterate over an infinite
state space. For numerical tractability, we truncate the state space
and propose a finite-state approximate MDP[23, Chapter 8]. The
truncated age processes evolve as follows

APA L1 i X = 0. K41 = 1,
gy = {7t X e

X otherwise.

AMA L]0 i Xps1 = 1, X =0,
AMA(N) = (A5 1l , (32)

X otherwise.

where [x]}, = x if x < m and [x]},

system is confined within

= m otherwise. That is, the

Sy ={(0,0,0),(1,1,0),(1,0,9),(0,1,8) : YV§ < N}.  (33)

All other states are considered indistinguishable from the boundary
states (1,0, N) and (0, 1, N).

We now show that the truncated MDP converges to the original
MDP exponentially fast in N. This result significantly mitigates the
“curse of dimensionality", and we shall feel safe to truncate the state
space with an appropriately chosen N.

Theorem 6. Let £L*(N) be the minimum average cost for the
truncated MDP. Then, limn_, oo .C’l(N) — L

Proor. Please see Theorem 4 in [13]. O

The optimal thresholds can be obtained by finding the minima of
the cost function £*(r, N) within the policy domain 0 < §,8 < N.
One may also apply the relative value iteration algorithm[14] in
the state domain Sy, but at the cost of high complexity. According
to our analysis, the impact of state space truncation vanishes for a
considerably large N. Therefore, the state space truncation method
entails a trade-off between optimality and complexity.

385

MOBIHOC ’24, October 14-17, 2024, Athens, Greece

%
KK
ST
IS

%
%
K5

275
250
2.25
2.00
175
1.50
125

10 0
5

(©p=02g=03L8=05 (d)p=0.25¢=0.255=0.38.

Figure 3: The average cost as a function of different thresh-
olds when ps = 0.9,4 = 8§, N = 100. The minimum is found at
(a) (6",8") = (3,13), (b) (6*,8") = (5,5), (¢) (6*,8") = (11,1), and
(d) (6%,8%) = (1, 24), respectively.

5 NUMERICAL RESULTS

In this section, we present numerical results for the remote estima-
tion problem (18).

Fig. 3 plots the average cost of the switching-type policy as a
function of different threshold values, i.e., .E/l((i d). Note that we
only plot the results when §,§ > 1 since transmitting in synced
states is costly in the considered scenarios. Fig. 3a shows the results
of an asymmetric source with prioritized states. The surface is
asymmetric and the low-cost region is where § is small but § is large.
This implies that the alarm state is significantly more important,
thus forcing the sensor to trigger transmissions more frequently in
MA errors. On the other hand, Fig. 3b shows a special case where
the source is symmetric and the states are equally important. In
this case, the sensor has no preference for different states, and the
source behaves in a balanced manner. Consequently, the surface is
symmetric, and the optimal threshold-type policy (5%, 8*) = (5,5)
is globally optimal.

Fig. 3c and Fig. 3d plot the results for an asymmetric source
with equally important states and for a symmetric source with
prioritized states, respectively. In case (c), although the states are
equally important, the source will stay in state 0 (normal state) for
a larger fraction of time. Hence, a smaller §* for AoFA is expected.
In case (d), the source is symmetric but state 1 (alarm) is of great
interest. It is observed that the threshold-type policy is suboptimal
since it treats the states equally. By contrast, the optimal policy, i.e.,
(6*,6%) = (1, 24), updates more frequently in MA errors. In outline,
our approach offers the flexibility to schedule transmissions according
to data significance, which depends on both the state importance and
the source pattern.

Fig. 4 compares the performance gap between the threshold-type
and switching-type policies, i.e., £4(6*) — £*(5*,5*). From Fig. 4a,



MOBIHOC 24, October 14-17, 2024, Athens, Greece

we observe that, when the source states are equally important,

the threshold-type policy demonstrates comparable performance if

the difference between the stationary probabilities of state 0 and

lp—ql
. ey P+q . .

are prioritized, as shown in Fig. 4b, the largest performance gap

lp—ql
+
the information significance depends mainly on the importance of

the states. Consequently, the threshold-type policy can perform
arbitrarily poorly as it treats all states equally.

state 1, i.e., , is relatively small. However, when the states

occurs when is small. This happens because in this case,

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

aq q

(a) B=025. (b) B =0.8.

Figure 4: The performance gap as a function of ¢ when p =
0.25, ps = 0.9, A = 8, N = 100.

6 CONCLUSION

This paper studied the semantic-aware remote estimation of a
discrete-state Markov source with prioritized states. We introduced
two new age metrics (i.e., AoMA and AoFA) to account for the
costs of different estimation errors. We identified the problem as a
countably infinite state MDP with unbounded costs. We showed the
existence of a switching-type optimal policy and derived analytical
results. For numerical traceability, we proposed a finite-state ap-
proximate MDP and proved its asymptotical optimality. Numerical
results underscored the effectiveness of exploiting data significance
in such systems.
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