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ABSTRACT
We consider the remote estimation of a discrete-stateMarkov source

with normal and alarm states. Data significance is revealed via two

semantic attributes: 1) Erroneously announcing a normal state at

the destination when the source is actually in an alarm state (i.e.,

missed alarm error) incurs a significantly higher cost than falsely

announcing an alarm state when the source is in a normal state (i.e.,

false alarm error). 2) Successive reception of an estimation error

may cause significant lasting impact, e.g., maintenance cost and

wrong operations. Motivated by this, we assign different costs to dif-

ferent estimation errors and introduce two new age metrics, namely

the Age of Missed Alarm (AoMA) and the Age of False Alarm (AoFA),

to account for the lasting impact incurred by different estimation

errors. We aim to achieve an optimal trade-off between the cost

of estimation error, lasting impact, and communication utilization.

The problem is formulated as an infinite-state Markov decision

process (MDP). We show that the optimal policy exhibits a switch-
ing structure, i.e., triggering transmissions only when the AoMA

or AoFA exceeds a threshold. Numerical results underscore that

our approach significantly reduces the amount of less important

information transmitted in the networks.

CCS CONCEPTS
• Networks→ Network performance modeling; Network per-
formance analysis.

KEYWORDS
Semantic communications, remote estimation, Markov source, age

of information, data significance
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1 INTRODUCTION
Efficient remote state estimation is the key to various networked

control systems (NCSs) [7, 18, 27]. A fundamental question is how
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to achieve an optimal trade-off between estimation performance and
communication cost [1, 2, 24]. This is often done through various

metrics that capture the value (semantics) of information, thereby
reducing the amount of inefficient data transmissions [5, 6, 10, 19].

Accuracy and freshness, usually measured by distortion and the

Age of Information (AoI) [9, 26, 28], respectively, are two dominant

semantic attributes in the remote estimation literature. Despite

significant efforts, they are inefficient in Markovian models due to

the ignorance of data significance and source evolution [10, 17].

Several metrics have been introduced to address the shortcom-

ings of AoI. The Age of Incorrect Information (AoII) [3, 15] captures

another semantic attribute — lasting impact, i.e., the cost of con-
secutive estimation errors. This attribute is significant in many

applications. For instance, successive reception of erroneous sta-

tus updates from a remotely controlled drone can lead to wrong

operations or even crashes. However, AoII might not suffice in our

problem since treats all source states equally, i.e., content-agnostic.
This egalitarianism results in inadequate transmissions in alarm

states but excessive transmissions in normal states. This gives in-

centives to content-aware metrics.

More recently, there have been some initial efforts to exploit

content awareness (i.e., state-dependent significance) in remote esti-

mation systems [14, 17, 20, 22, 25]. The authors in [25] assigned a

quadratic age variable for the alarm state and a linear age variable

for the normal state, thus punishing more on the age of the alarm

state. However, this method inherits some of the shortcomings of

AoI. The Version Age of Information (VAoI) [20] tracks content

changes in the age process, which becomes more relevant in sys-

tems sensitive to error variations. The most relevant metric that

directly captures the data significance is the cost of actuation er-
ror (CAE) [14, 17, 21, 22], which assigns different costs to different
estimation errors. Intuitively, a missed alarm error incurs a signifi-

cantly higher cost than a false alarm error. Theoretical results were

presented in [14], which showed that the optimal policy specifies

a deterministic mapping from estimation error to transmission

decision. However, the lasting impact is ignored.

The main contributions of this work are as follows: 1) We intro-

duce two new age metrics, namely the Age of Missed Alarm (AoMA)

and the Age of False Alarm (AoFA), to account for the lasting im-

pacts of missed alarm errors and false alarm errors, respectively.

The AoMA and AoFA evolve dependently, allowing them to dis-

tinguish between estimation errors. 2) We show that the optimal

policy is of a switching-type, i.e., triggering transmissions when the

AoMA or AoFA exceeds a given threshold. Moreover, we give a

sufficient condition under which the optimal policy degenerates

from the switching-type to the simple threshold-type, i.e., identi-

cal thresholds. 3) For numerical tractability, we truncate the age
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Figure 1: Remote estimation with prioritized states.

processes and show the asymptotical optimality of the truncated

problem.

2 SYSTEM MODEL
2.1 Remote Estimation Model
We consider a remote estimation system shown in Fig. 1. The model

consists of the parts listed in the next subsections.

2.1.1 Source. The information source is modeled by a two-state,

discrete-time Markov chain (DTMC) {𝑋𝑡 }𝑡≥1, where 𝑋𝑡 ∈ {0, 1} is
the state variable, 𝑡 ≥ 1 is the time index. At each slot 𝑡 , the source

resides in either state 0 (normal, or low-priority) or state 1 (alarm, or

high-priority). It is worth mentioning that states here can represent

either quantization levels of a physical process or abstract statuses

(e.g., operation modes, component failures, or abrupt changes in

system dynamics, etc.) of a system
1
.

The state transition probability matrix of the DTMC is

𝑄 =

[
𝑝 𝑝

𝑞 𝑞

]
(1)

where 𝑝 = 1 − 𝑝, 𝑞 = 1 − 𝑞, 𝑄𝑖, 𝑗 = Pr[𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖] is the
probability of transitioning from state 𝑖 to state 𝑗 between two

consecutive time slots. To avoid pathological cases, we assume𝑄 is

irreducible, i.e., 0 < 𝑝, 𝑞 < 1. A DTMC is called symmetric if𝑄 = 𝑄𝑇
.

Otherwise, the chain is called asymmetric. Moreover, we call a chain

positively correlated if it is more likely to stay in the current state

than to change state, i.e., 𝑝 < 𝑞. The chain is negatively correlated
if 𝑝 > 𝑞 and is i.i.d. if 𝑝 = 𝑞.

2.1.2 Channel. The channel state 𝐻𝑡 ∈ {0, 1} follows a Bernoulli
distribution with a mean of 𝑝𝑠 . Here, 𝐻𝑡 = 1 denotes the successful

reception of a data packet at time 𝑡 , and 𝐻𝑡 = 0 denotes a packet

drop. Upon successful reception, the receiver sends a one-bit ac-

knowledgment (ACK) packet to the sensor. Otherwise, a negative

ACK (NACK) signal is feedback to indicate transmission failure. We

assume that ACK/NACK packets are delivered instantaneously and

error-free. Therefore, the sensor knows precisely the estimate 𝑋𝑡

at the receiver.

2.1.3 Sensor. The sensor sequentially observes the process and

decides whether or not to transmit the source state. We assume

that the decision made in the current time slot will take effect at the
beginning of the next time slot, not immediately. Specifically, if dur-
ing the current time slot 𝑡 , the sensor chooses to update the source

state, a new packet 𝑋𝑡+1 is sampled and transmitted at the begin-

ning of slot 𝑡 + 1. This action delay accounts for several practical

considerations such as measurement delay and system processing

1
Examples include Markov jump systems[4], where the system has a finite number of

operation modes governed by a DTMC. Each mode corresponds to a specific type of

physical process or a particular group of system parameters.

time [8]. Let 𝐴𝑡 ∈ {0, 1} denote the decision variable, where 𝐴𝑡 = 1

means transmission while 𝐴𝑡 = 0 means no transmission.

The information available at the sensor at each decision epoch 𝑡

is

𝐼1

𝑡 = {𝑋1:𝑡 , 𝑋1:𝑡 , 𝐴1:𝑡−1}. (2)

The sensor chooses an action 𝐴𝑡 according to some transmission
rule 𝜋𝑡 , i.e.,

𝐴𝑡 = 𝜋𝑡 (𝐼1

𝑡 ) = 𝜋𝑡 (𝑋1:𝑡 , 𝑋1:𝑡 , 𝐴1:𝑡−1) . (3)

Notice that 𝜋𝑡 can be either deterministic, selecting an action in a

given state with certainty, or randomized, specifying a probability

distribution on the action space. The collection 𝜋 = {𝜋𝑡 }∞𝑡=1
is

called the transmission policy.

2.1.4 Receiver. Let 𝑌𝑡 ∈ {0, 1, E} denote the output of the channel
at time 𝑡 , where the symbol E denotes no packet received. The

information available at the receiver at each time 𝑡 is

𝐼2

𝑡 = {𝑌1:𝑡 , 𝐻1:𝑡 }. (4)

However, it is challenging to reconstruct source states using under-

sampled measurements. The estimation rule 𝑔𝑡 depends on the

source statistics, the channel condition, and the transmission pol-

icy. In this paper, we assume that the receiver does not know the

source pattern and updates its estimate using the latest received

measurement
2
[14, 15, 17], i.e.,

𝑋𝑡 = 𝑔𝑡 (𝐼2

𝑡 ) = 𝑋𝑈𝑡
, (5)

where𝑈𝑡 = max{1 ≤ 𝜏 ≤ 𝑡 : 𝑌𝜏 ≠ E}.

Remark 1. The AoI in such systems is defined as ΔAoI
𝑡 = 𝑡 −𝑈𝑡 .

However, AoI ignores both the source evolution and the information
content. Consequently, a large AoI does not necessarily mean poor
estimation performance, as the system may remain synced for some
time, and vice versa.

2.2 Semantics-Aware Age Metrics
Since the source states are not equally important, we distinguish

the estimation errors by the following two types.

• False Alarm (FA): It occurs when 𝑋𝑡 = 0 and 𝑋𝑡 = 1,

indicating an unnecessary alarm triggered by the receiver.

While somewhat less important, FA errors may incur extra

operation or maintenance costs.

• Missed Alarm (MA): It occurs when 𝑋𝑡 = 1 and 𝑋𝑡 = 0,

indicating a failure to detect an alarm by the receiver. MA

errors are more crucial and thus higher penalties.

Then, we introduce two new agemetrics, namely the Age of False

Alarm (AoFA) and the Age of Missed Alarm (AoMA), to quantify

the lasting impact3 of the FA and MA errors, respectively. The age

processes evolve as follows

ΔFA

𝑡+1
=

{
ΔFA

𝑡 + 1, if 𝑋𝑡+1 = 0, 𝑋𝑡+1 = 1,

0, otherwise.
(6)

2
Assuming the availability of source statistics at the receiver side, one may consider

other estimation rules such as MMSE and Maximum likelihood estimation (MLE)[12].

3
Staying in an erroneous state for an extended period may lead to substantial ramifi-

cations, not mere accumulated costs during this period[15, 22].
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Figure 2: Three-dimensional DTMC representing {𝑆𝑡 }𝑡≥1.

ΔMA

𝑡+1
=

{
ΔMA

𝑡 + 1, if 𝑋𝑡+1 = 1, 𝑋𝑡+1 = 0,

0, otherwise.
(7)

Let 𝑆𝑡 = (𝑋𝑡 , 𝑋𝑡 ,Δ
MA

𝑡 ,ΔFA

𝑡 ) denote the system state at time 𝑡 .

Since ΔFA

𝑡 and ΔMA

𝑡 cannot simultaneously be non-zero, they can

be formed in a compact way as

Δ𝑡 = 1{ (𝑋𝑡 ,𝑋̂𝑡 )=(0,1) }Δ
FA

𝑡 + 1{ (𝑋𝑡 ,𝑋̂𝑡 )=(1,0) }Δ
MA

𝑡 , (8)

where 1{ ·} is the indicator function of an event. For simplicity, in

the rest of the paper, we shall use 𝑆𝑡 = (𝑋𝑡 , 𝑋𝑡 ,Δ𝑡 ) as the system
state. The state space is given by

S = {(0, 0, 0), (1, 1, 0)} ∪ {(0, 1, 𝛿), (1, 0, 𝛿) : 𝛿 ≥ 1}, (9)

where S
synced

= {(0, 0, 0), (1, 1, 0)}, SFA = {(0, 1, 𝛿), 𝛿 ≥ 1}, and
SMA = {(1, 0, 𝛿), 𝛿 ≥ 1} are the set of synced states, the set of

FA errors, and the set of MA errors, respectively. Note that S is a

countably infinite set because the ages are possibly unbounded.

The cost of being in state 𝑆𝑡 is defined as

𝑐 (𝑆𝑡 ) = 𝛽ΔMA

𝑡 + (1 − 𝛽)ΔFA

𝑡

=
(
𝛽1{ (𝑋𝑡 ,𝑋̂𝑡 )=(1,0) } + (1 − 𝛽)1{ (𝑋𝑡 ,𝑋̂𝑡 )=(0,1) }

)
Δ𝑡 , (10)

where 𝛽 ∈ (0, 1] represents the significance of MA errors. Recall

that action𝐴𝑡 will take effect at the beginning of slot 𝑡+1. Therefore,

we can only evaluate the effectiveness of an action after receiving

ACK/NACK packets, i.e., knowing the outcome of 𝑆𝑡+1. The (per-

step expected) cost of taking an action 𝐴𝑡 in state 𝑆𝑡 is

𝑐 (𝑆𝑡 , 𝐴𝑡 ) = E{𝑐 (𝑆𝑡+1) |𝑆𝑡 , 𝐴𝑡 }, (11)

where the expectation is taken over the channel uncertainties, the

source statistics, and the (possibly) random actions.

Remark 2. The cost (10) assigns different costs and age penalties
for different estimation errors. Notice that AoI and AoII [15] only have
one age process. Therefore, they cannot distinguish between estimation
errors and are not applicable in some applications such as quickest
change detection [11] where a certain state holds more interest.

2.3 System Dynamics
Take an action 𝑎 in a certain state 𝑠 = (𝑥, 𝑥, 𝛿), the system state will

transition to 𝑠′ = (𝑥 ′, 𝑥 ′, 𝛿 ′) according to the following probabilities

𝑃𝑠,𝑠′ (𝑎) = Pr{(𝑥 ′, 𝑥 ′) | (𝑥, 𝑥), 𝑎}Pr{𝛿 ′ |𝑥 ′, 𝑥 ′, 𝛿}, (12)

where

Pr{(𝑥 ′, 𝑥 ′) | (𝑥, 𝑥), 𝑎} =



𝑄𝑖,𝑘𝑝𝑠 , 𝑎 = 1, (𝑥, 𝑥) = (𝑖, 𝑗), (𝑥 ′, 𝑥 ′) = (𝑘, 𝑘), 𝑘 ≠ 𝑗,

𝑄𝑖,𝑘𝑝 𝑓 , 𝑎 = 1, (𝑥, 𝑥) = (𝑖, 𝑗), (𝑥 ′, 𝑥 ′) = (𝑘, 𝑗), 𝑘 ≠ 𝑗,

𝑄𝑖, 𝑗 , 𝑎 = 1, (𝑥, 𝑥) = (𝑖, 𝑗), (𝑥 ′, 𝑥 ′) = ( 𝑗, 𝑗),
𝑄𝑖,𝑘 , 𝑎 = 0, (𝑥, 𝑥) = (𝑖, 𝑗), (𝑥 ′, 𝑥 ′) = (𝑘, 𝑗),
0, otherwise.

(13)

Pr{𝛿 ′ |𝑥 ′, 𝑥 ′, 𝛿} =


1, 𝑥 ′ ≠ 𝑥 ′, 𝛿 ′ = 𝛿 + 1,

1, 𝑥 ′ = 𝑥 ′, 𝛿 ′ = 0,

0, otherwise.

(14)

where 𝑝 𝑓 = 1 − 𝑝𝑠 , 𝑖, 𝑗, 𝑘 ∈ {0, 1}. Fig. 2 shows the evolution of

process 𝑆𝑡 under the always-transmission policy, i.e.,𝐴𝑡 = 1,∀𝑡 ≥ 1.

3 PROBLEM FORMULATION
Given a transmission policy 𝜋 , the average content-aware estima-

tion error is defined as

𝐶 (𝜋) ≜ lim sup

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

E𝜋
[
𝑐 (𝑆𝑡 , 𝐴𝑡 )

��𝑆1 = 𝑠1

]
, (15)

where E𝜋 represents the conditional expectation, given that policy

𝜋 is employed with initial state 𝑠1 = (0, 0, 0).
Similarly, the transmission frequency (average number of trans-

missions) is defined as

𝐹 (𝜋) ≜ lim sup

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

E𝜋
[
𝑓 (𝑆𝑡 , 𝐴𝑡 )

��𝑆1 = 𝑠1

]
, (16)

where 𝑓 (𝑆𝑡 , 𝐴𝑡 ) = 1{𝐴𝑡≠0} .
Given the communication cost (i.e., the cost of joint sampling and

transmission) 𝜆 for each transmission, the sensor aims to achieve a

desired balance between the communication cost and the estimation

performance. Hence, the sensor’s global objective function is

L𝜆 (𝜋) ≜ lim sup

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

E𝜋
[
𝑙𝜆 (𝑆𝑡 , 𝐴𝑡 )

��𝑆1 = 𝑠1

]
,

= 𝐶 (𝜋) + 𝜆𝐹 (𝜋), (17)

where 𝑙𝜆 (𝑆𝑡 , 𝐴𝑡 ) ≜ 𝑐 (𝑆𝑡 , 𝐴𝑡 ) + 𝜆𝑓 (𝑆𝑡 , 𝐴𝑡 ).
The sensor aims to determine the 𝜆-optimal transmission policy

𝜋∗
𝜆
to minimize (17), i.e.,

L𝜆 = inf

𝜋∈Π
L𝜆 (𝜋), (18)

where Π is the set of all admissible policies.

Remark 3. Problem (18) is an average-cost Markov Decision Pro-
cess (MDP). However, it encounters computing and memory challenges
due to the infinite state space and (possibly) unbounded per-step costs.
The main approach to remedy these difficulties is to reveal favor-
able properties of the optimal policy, thereby restricting the policy
searching space.

Definition 1. A policy is called 𝜆-optimal if, for a given 𝜆 ≥ 0, it

attains the infimum in (18).

4 MAIN RESULTS
4.1 Optimality of Switching-Type Policy
In the sequel, we develop structural results of the 𝜆-optimal pol-

icy. Problem (18) can be characterized by an MDP with a 4-tuple

383



MOBIHOC ’24, October 14–17, 2024, Athens, Greece Jiping Luo and Nikolaos Pappas

(S,A, 𝑃, 𝑙𝜆). Herein, 𝑙𝜆 (𝑠, 𝑎) is the (per-step) cost function, and 𝑃 is

the system transition probability function given in (12). To address

the “curse of dimensionality" and the “curse of memory", we intend

to derive the structure of the 𝜆-optimal policy and characterize the

limiting behavior of the induced Markov chain.

We first show in the following proposition the existence of a

𝜆-optimal policy. Moreover, it allows us to restrict attention to

stationary deterministic policies.

Proposition 1. Suppose that 𝑄 is irreducible. Then, there exists a
function ℎ𝜆 such that

L𝜆 + ℎ𝜆 (𝑖) = min

𝑎
{𝑙𝜆 (𝑖, 𝑎) +

∑︁
𝑗
𝑃𝑖, 𝑗 (𝑎)ℎ𝜆 ( 𝑗)} (19)

for all 𝑖 ∈ S, where L𝜆 is the minimum average cost. Furthermore,
the 𝜆-optimal policy 𝜋∗

𝜆
is stationary deterministic given by

𝜋∗
𝜆
(𝑖) = arg min

𝑎
{𝑙𝜆 (𝑖, 𝑎) +

∑︁
𝑗
𝑃𝑖, 𝑗 (𝑎)ℎ𝜆 ( 𝑗)}, 𝑖 ∈ S. (20)

Proof. Please see Proposition 2 in [13]. □

Remark 4. One may try to apply value iteration methods to solve
the Bellman’s optimality equation (19). However, it is not applicable
in practice as we cannot iterate over infinitely many states. Further-
more, even with such an optimal policy at hand, it is impossible to
store all state-action pairs due to memory constraints at the sensor.
Deep reinforcement learning (DRL) techniques can partially address
these challenges, however, at the cost of suboptimality and lack of
interpretability.

We first address the “curse of memory". Fortunately, the fol-

lowing important theorem shows that the 𝜆-optimal policy has a

simple switching-type structure facilitating the policy storage and

algorithm design.

Assumption 1. The source is positively correlated4.

Definition 2. We define the ordering 𝑠1 ≤ 𝑠2 for 𝑠1, 𝑠2 ∈ SAoMA ≜
S
synced

∪SMA if the age satisfies 0 ≤ 𝛿1 ≤ 𝛿2. Similarly, the ordering

for 𝑠1, 𝑠2 ∈ SAoFA ≜ S
synced

∪ SFA is 𝑠1 ≤ 𝑠2 if 0 ≤ 𝛿1 ≤ 𝛿2.

Theorem 3. The 𝜆-optimal policy has a switching-type structure.
That is, for any given ordering 𝑠− ≤ 𝑠 ≤ 𝑠+, 𝑠−, 𝑠, 𝑠+ ∈ SAoMA (orSAoFA),
if 𝜋∗

𝜆
(𝑠) = 1, then 𝜋∗

𝜆
(𝑠+) = 1 for all 𝑠+ ≥ 𝑠 . Also, if 𝜋∗

𝜆
(𝑠) = 0, then

𝜋∗
𝜆
(𝑠−) = 0 for all 𝑠− ≤ 𝑠 .

Proof. Please see Theorem 1 in [13]. □

The sensor initiates a transmission only when the current AoMA

exceeds the threshold
¯𝛿 or the AoFA exceeds the threshold 𝛿

¯

. There-

fore, the sensor only needs to store two threshold values instead of

all possible state-action pairs, thus remedying the “curse of mem-

ory". We note that the threshold
¯𝛿 for AoMA does not necessarily

equal the threshold 𝛿 for AoFA. We will show that identical thresh-

olds are generally suboptimal (see Section 4.3).

4
This is a common assumption in the literature [16]. Analysis without this assumption

can be found in [13].

4.2 Performance of Switching-Type Policy
In the sequel, we present analytical results of the switching-type

policy. It is worth mentioning that our approach can differentiate
between the synced states–a feature rarely considered in the litera-

ture. This feature offers significant performance benefits since the

synced states are not equally important. For instance, if the sensor
triggers a transmission in the synced state (0, 0, 0), then there is a

high probability that the system will directly transition to another

synced state (1, 1, 0), thereby forcing the system into low-cost FA

errors. In outline, our approach allows us to distinguish between

the following four cases: (i) always transmission, i.e.,
¯𝛿 = 𝛿

¯

= 0, (ii)

no transmission in synced states, i.e.,
¯𝛿, 𝛿
¯

≥ 1, (iii) transmitting in

state (0, 0, 0), i.e., ¯𝛿 = 0, 𝛿
¯

≥ 1, and (iv) transmitting in state (1, 1, 0),
i.e.,

¯𝛿 ≥ 1, 𝛿
¯

= 0.

The main result of this section follows. Proposition 2 establishes

the stationary distribution of the switching-type policy for the

dominating case
¯𝛿, 𝛿
¯

≥ 1. Further, theorem 4 provides the closed-

form expressions for the average cost associated with this case. The

analysis for the other three cases is carried out similarly (see [13]).

Proposition 2. Suppose that the thresholds for AoMA and AoFA
are ¯𝛿, 𝛿

¯
≥ 1. Then, the DTMC in question is irreducible and admits a

stationary distribution given by

𝜈0,0,0 = Γ0 (𝑎, 𝑏), 𝜈1,1,0 = Γ1 (𝑎, 𝑏), (21)

𝜈
1,0,𝑘 =

{
𝑝𝑞𝑘−1𝜈0,0,0, 1 ≤ 𝑘 ≤ ¯𝛿,

𝑝𝑞
¯𝛿−1 (𝑞𝑝 𝑓 )𝑘−

¯𝛿𝜈0,0,0, 𝑘 > ¯𝛿.
(22)

𝜈
0,1,𝑘 =

{
𝑞𝑝𝑘−1𝜈1,1,0, 1 ≤ 𝑘 ≤ 𝛿

¯
,

𝑞𝑝𝛿¯
−1 (𝑝𝑝 𝑓 )𝑘−𝛿¯ 𝜈1,1,0, 𝑘 > 𝛿

¯
.

(23)

where

Γ0 (𝑎, 𝑏) =
𝑝𝑏 (𝛿

¯
)

(1 + 𝑎(1))𝑝𝑏 (𝛿
¯
) + (1 + 𝑏 (1))𝑞𝑎( ¯𝛿)

, (24)

Γ1 (𝑎, 𝑏) =
𝑞𝑎( ¯𝛿)

(1 + 𝑎(1))𝑝𝑏 (𝛿
¯
) + (1 + 𝑏 (1))𝑞𝑎( ¯𝛿)

, (25)

𝑎(1) = 𝑝 (1 − 𝑞
¯𝛿−1)

1 − 𝑞
+ 𝑎( ¯𝛿), 𝑎( ¯𝛿) = 𝑝𝑞

¯𝛿−1

1 − 𝑞𝑝 𝑓
, (26)

𝑏 (1) = 𝑞(1 − 𝑝𝛿¯
−1)

1 − 𝑝
+ 𝑏 (𝛿

¯
), 𝑏 (𝛿

¯
) = 𝑞𝑝𝛿¯

−1

1 − 𝑝𝑝 𝑓
. (27)

Proof. Please see Proposition 3 in [13]. □

Theorem 4. For a given switching-type policy 𝜋 with thresholds
¯𝛿, 𝛿
¯
≥ 1, the average costs are

𝐶 (𝜋) = 𝛽𝑝𝜓 (𝑞, ¯𝛿)𝜈0,0,0 + (1 − 𝛽)𝑞𝜓 (𝑝, 𝛿
¯
)𝜈1,1,0, (28)

𝐹 (𝜋) = 𝑎( ¯𝛿)𝜈0,0,0 + 𝑏 (𝛿¯ )𝜈1,1,0, (29)

L𝜆 (𝜋) = 𝐶𝜆 (𝜋) + 𝜆𝐹𝜆 (𝜋), (30)

where 𝑎( ¯𝛿), 𝑏 (𝛿
¯
), 𝜈0,0,0, and 𝜈1,1,0 are given in Proposition 2,𝜓 (𝑝, 𝛿) =

1−[𝑝+(1−𝑝 )𝛿 ]𝑝𝛿−1

(1−𝑝 )2
+ [𝑝𝑝𝑓 +(1−𝑝𝑝𝑓 )𝛿 ]𝑝𝛿−1

(1−𝑝𝑝𝑓 )2
.

Proof. Please see Theorem 2 in [13]. □
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4.3 Suboptimality of Threshold-Type Policy
The following theorem shows that, when the source is symmetric

and the states are equally important, the optimal policy degener-

ates from a switching-type to a simple threshold-type. This result
underscores that existing results on AoII can be viewed as special cases
of our approach (see [15]).

Theorem 5. Suppose that the source is symmetric and the states
are equally important, i.e., 𝑝 = 𝑞, 𝛽 = 0.5. Then, the optimal policy
has identical thresholds.

Proof. Please see Theorem 3 in [13]. □

Remark 5. The assertion of Theorem 5 fails to hold when the
source is asymmetric or the states are prioritized. Since our approach
covers the single age process case, it implies that the threshold-type
policy is generally suboptimal. Intuitively, a single threshold cannot
distinguish between different types of errors and different synced
states. Also, a threshold policy with 𝛿 = 0 is nothing but a continuous-
transmission policy.

4.4 Asymptotical Optimality
As mentioned earlier, it is impractical to iterate over an infinite

state space. For numerical tractability, we truncate the state space

and propose a finite-state approximate MDP[23, Chapter 8]. The

truncated age processes evolve as follows

ΔFA

𝑡+1
(𝑁 ) =

{[
ΔFA

𝑡 + 1

]+
𝑁
, if 𝑋𝑡+1 = 0, 𝑋𝑡+1 = 1,

0, otherwise.
(31)

ΔMA

𝑡+1
(𝑁 ) =

{[
ΔMA

𝑡 + 1

]+
𝑁
, if 𝑋𝑡+1 = 1, 𝑋𝑡+1 = 0,

0, otherwise.
(32)

where [𝑥]+𝑚 = 𝑥 if 𝑥 ≤ 𝑚 and [𝑥]+𝑚 = 𝑚 otherwise. That is, the

system is confined within

S𝑁 = {(0, 0, 0), (1, 1, 0), (1, 0, 𝛿), (0, 1, 𝛿) : ∀𝛿 ≤ 𝑁 }. (33)

All other states are considered indistinguishable from the boundary

states (1, 0, 𝑁 ) and (0, 1, 𝑁 ).
We now show that the truncated MDP converges to the original

MDP exponentially fast in 𝑁 . This result significantly mitigates the

“curse of dimensionality", and we shall feel safe to truncate the state

space with an appropriately chosen 𝑁 .

Theorem 6. Let L𝜆 (𝑁 ) be the minimum average cost for the
truncated MDP. Then, lim𝑁→∞ L𝜆 (𝑁 ) → L𝜆 .

Proof. Please see Theorem 4 in [13]. □

The optimal thresholds can be obtained by finding the minima of

the cost function L𝜆 (𝜋, 𝑁 ) within the policy domain 0 ≤ ¯𝛿, 𝛿
¯

≤ 𝑁 .

One may also apply the relative value iteration algorithm[14] in

the state domain S𝑁 , but at the cost of high complexity. According

to our analysis, the impact of state space truncation vanishes for a

considerably large 𝑁 . Therefore, the state space truncation method

entails a trade-off between optimality and complexity.
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Figure 3: The average cost as a function of different thresh-
olds when 𝑝𝑠 = 0.9, 𝜆 = 8, 𝑁 = 100. The minimum is found at
(a) ( ¯𝛿∗, 𝛿

¯
∗) = (3, 13), (b) ( ¯𝛿∗, 𝛿

¯
∗) = (5, 5), (c) ( ¯𝛿∗, 𝛿

¯
∗) = (11, 1), and

(d) ( ¯𝛿∗, 𝛿
¯
∗) = (1, 24), respectively.

5 NUMERICAL RESULTS
In this section, we present numerical results for the remote estima-

tion problem (18).

Fig. 3 plots the average cost of the switching-type policy as a

function of different threshold values, i.e., L𝜆 ( ¯𝛿, 𝛿
¯

). Note that we
only plot the results when

¯𝛿, 𝛿
¯

≥ 1 since transmitting in synced

states is costly in the considered scenarios. Fig. 3a shows the results

of an asymmetric source with prioritized states. The surface is

asymmetric and the low-cost region is where
¯𝛿 is small but 𝛿

¯

is large.

This implies that the alarm state is significantly more important,
thus forcing the sensor to trigger transmissions more frequently in
MA errors. On the other hand, Fig. 3b shows a special case where

the source is symmetric and the states are equally important. In

this case, the sensor has no preference for different states, and the

source behaves in a balanced manner. Consequently, the surface is

symmetric, and the optimal threshold-type policy ( ¯𝛿∗, 𝛿
¯

∗) = (5, 5)
is globally optimal.

Fig. 3c and Fig. 3d plot the results for an asymmetric source

with equally important states and for a symmetric source with

prioritized states, respectively. In case (c), although the states are

equally important, the source will stay in state 0 (normal state) for

a larger fraction of time. Hence, a smaller 𝛿
¯

∗
for AoFA is expected.

In case (d), the source is symmetric but state 1 (alarm) is of great

interest. It is observed that the threshold-type policy is suboptimal

since it treats the states equally. By contrast, the optimal policy, i.e.,

( ¯𝛿∗, 𝛿
¯

∗) = (1, 24), updates more frequently in MA errors. In outline,

our approach offers the flexibility to schedule transmissions according
to data significance, which depends on both the state importance and
the source pattern.

Fig. 4 compares the performance gap between the threshold-type

and switching-type policies, i.e., L𝜆 (𝛿∗) −L𝜆 ( ¯𝛿∗, 𝛿
¯

∗). From Fig. 4a,
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we observe that, when the source states are equally important,

the threshold-type policy demonstrates comparable performance if

the difference between the stationary probabilities of state 0 and

state 1, i.e.,
|𝑝−𝑞 |
𝑝+𝑞 , is relatively small. However, when the states

are prioritized, as shown in Fig. 4b, the largest performance gap

occurs when
|𝑝−𝑞 |
𝑝+𝑞 is small. This happens because in this case,

the information significance depends mainly on the importance of

the states. Consequently, the threshold-type policy can perform

arbitrarily poorly as it treats all states equally.
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(b) 𝛽 = 0.8.

Figure 4: The performance gap as a function of 𝑞 when 𝑝 =

0.25, 𝑝𝑠 = 0.9, 𝜆 = 8, 𝑁 = 100.

6 CONCLUSION
This paper studied the semantic-aware remote estimation of a

discrete-state Markov source with prioritized states. We introduced

two new age metrics (i.e., AoMA and AoFA) to account for the

costs of different estimation errors. We identified the problem as a

countably infinite state MDP with unbounded costs. We showed the

existence of a switching-type optimal policy and derived analytical

results. For numerical traceability, we proposed a finite-state ap-

proximate MDP and proved its asymptotical optimality. Numerical

results underscored the effectiveness of exploiting data significance

in such systems.
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