
A Novel Method to Mitigate Adversarial Attacks
Against AI-as-a-Service Functionality

Ömer Faruk Tuna
Ericsson Research
Istanbul, Turkey

omer.tuna@ericsson.com

Leyli Karaçay
Ericsson Research
Istanbul, Turkey

leyli.karacay@ericsson.com

Utku Gülen
Ericsson Research
Istanbul, Turkey

utku.gulen@ericsson.com

Abstract—Artificial Intelligence (AI) will play a crucial role in
enabling 6G technology. In comparison to current networks that
mainly offer ubiquitous communication capabilities, 6G aims to
transform the network into a robust, distributed AI platform,
making its AI capabilities accessible to consumers. This will
be facilitated by the AI-as-a-Service (AIaaS) framework, which
allows network service providers to effectively utilize AI as a
service, opening up new possibilities. Therefore, it is vital to ensure
that the AIaaS framework is well-protected against malicious
attacks. However, research on Black-Box attacks indicates that
merely having access to the model’s input and output is sufficient
to perform adversarial attacks by creating perturbations that can
deceive AI models. In this study, we propose an effective defense
mechanism to mitigate inference query-based Black-Box attacks
which might target AI models deployed in an AIaaS framework.
We have experimentally evaluated and verified the efficacy of our
approach on standard datasets.

Index Terms—Adversarial defense, uncertainty, AI-as-a-
Service, deep learning, trustworthy AI, 6G security.

I. INTRODUCTION

The concept for 6G highlights the critical integration of
artificial intelligence (AI) applications into mobile networks. To
become a robust platform capable of supporting a wide range
of AI applications, mobile network architecture must undergo
fundamental changes. The future network architecture must be
carefully planned in order to easily integrate and facilitate AI
applications and services. In this scenario, mobile networks
will play an important role in orchestrating, administering,
scheduling, and exposing AI-related network services. This
complex responsibility emphasizes the critical role that network
infrastructure will play in allowing the secure and reliable use
of AI-powered functions.

Despite its track record of success in a variety of applica-
tions, including wireless communication and network resource
orchestration, Machine Learning (ML) poses some distinct
security challenges. Recent research has showed that several
adversarial attacks can be used effectively against AI-driven
wireless networks [1], [2]. Adversarial ML-based attacks are
more stealthy and hard to detect than classic attack scenarios
because of their small footprints.

Adversarial attacks have the ability to essentially com-
promise the security of AI-driven networks, posing severe
risks, particularly in areas such as telecommunications where

security is a major issue. In this paper, we focus on inference
query-based Black-Box attacks that may target AI/ML models
deployed in an AI-as-a-Service (AIaaS) framework and present
a defense mechanism to mitigate them. Our technique allows
the model owner to quantify the model’s uncertainty (aleatoric
uncertainty) estimations during prediction time and use this
information to update the model weights, resulting in more
accurate predictions.

II. SYSTEM MODEL

AIaaS provides AI services and functions to the users,
eliminating the need for users to build and maintain their own
AI infrastructure [3]. AIaaS providers can supply pre-built AI
models that are accessible via APIs (Application Programming
Interfaces). Figure 1 shows an high level overview of AIaaS
framework.

Fig. 1: A simple overview of AIaaS framework.

Using MLOps (Machine Learning Operations) features, the
AIaaS framework offers higher-level AI services to the appli-
cations. The life-cycle management capabilities for machine
learning pipelines are supplied by MLOps. It can be used to
optimize the functionality of the network functions (NFs) and
automate their (re-)training and (re-)deployment in the context
of mobile networks. For example, a new AI/ML model for a
NWDAF (Network Data Analytics Function) analytics service
(such as network slice load analytics) can be trained, tested,
and deployed using MLOps. Additionally, it can be applied to
automate the lifetime of an additional AI service that will be
made available to AIaaS customers. The automated workflow

2024 IEEE Middle East Conference on Communications and Networking (MECOM)

979-8-3503-7671-5/24/$31.00 ©2024 IEEE 181

20
24

 IE
EE

 M
id

dl
e

Ea
st

 C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
ki

ng
 (M

EC
O

M
) |

 9
79

-8
-3

50
3-

76
71

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

EC
O

M
61

49
8.

20
24

.1
08

80
96

3

Authorized licensed use limited to: Ericsson. Downloaded on December 19,2025 at 06:42:45 UTC from IEEE Xplore. Restrictions apply.

of ML pipeline, which consists of steps for creating and using
an ML model in order, is shown in Figure 2.

Fig. 2: MLOps Pipeline.

AI agents use the trained AI/ML models to carry out the
inference process when the training, validation, and deployment
phases are complete. Through an API, external consumers can
access the models that have been deployed in the AI agents.
Inference requests initiated by the consumers are handled by
the AI agents and the outputs are in the form of predictions or
reports for the customers in an as-a-service fashion. Deployed
models are vulnerable to several types of attacks, such as model
evasion and model inversion, in which adversaries attempt
to influence the decision of the target model by carefully
constructed perturbations to the input. These risks necessitate
constant monitoring of the inference outputs provided by AI
agents and activating retraining procedures when necessary.

III. ADVERSARIAL ATTACKS ON AI MODELS

Due to the vulnerabilities in deep neural network (DNN)
models, it is challenging for them to defend in adversarial
setting. The prediction of the model may lead unexpected
outcomes due to its sensitivity to even minor variations in
the input data. Figure 3 illustrates how an attacker can take
advantage of such a vulnerability.

Fig. 3: An example of adversarial attack where a precisely
crafted perturbation manipulates the model in such a way that
a cat is wrongly classified as a car.

In general, adversarial strategies can be classified based on
different criteria. Adversarial attacks can be divided into two
groups according to the level of knowledge of the attacker.
White-Box Setting is the one in which the attacker is fully

aware of the model, including its architecture, weights, hyper-
parameters, etc. Nonetheless, if the attacker is unaware of the
deployed model and protection plan, we refer to this type of
setting as Black-Box Setting [4]. In this study, we mainly
focus on attacks in a Black-Box setting and partly address
some White-Box attacks that has a similar affect on the model
decision as in the case of Black-Box attacks.

Most of the White-Box attack methods are based on perturb-
ing the input sample in order to maximize the model’s loss. In
recent years, many different adversarial attack techniques have
been suggested in the literature. The most widely known and
used adversarial attacks are Fast-Gradient Sign Method, Iter-
ative Gradient Sign Method, DeepFool and Carlini&Wagner.
To begin with the Fast-Gradient Sign Method [5], it is one of
the first and most well-known adversarial attacks so far. The
direction in which the pixel value of the input image should be
changed to minimize the model’s loss function is determined
by this attack algorithm using the derivative of the model’s
loss function with respect to the input sample. Once extracted,
it simultaneously modifies every pixel in the opposite direction
to maximize the loss. With the following formula, we may
create adversarial samples for a model whose classification loss
function is represented as J(Hw,x, y): Hw represents the AI
model with parameters w; x is the benign input; and ytrue is
the real label of our input.

xadv = x+ ϵ · sign (∇xJ(Hw,x, ytrue)) (1)

Following the proposal of the FGSM attack, Kurakin et
al. [6] suggested a small but important improvement to the
FGSM. Using the given value ϵ to clip the output, instead
of taking one large step ϵ, we take multiple smaller steps
α in the direction of the gradient sign. FGSM is merely
applied iteratively to an input sample in this technique, which
is sometimes referred to as the Basic Iterative Method (BIM).
Equation 2 describes how to generate perturbed images under
the linf norm for a BIM attack.

x∗
t = x

x∗
t+1 = clipx,ϵ{xt + α · sign (∇xJ(Hw,x

∗
t , ytrue))}

(2)

where x is the clean sample input to the model, x∗ is the
output adversarial sample at ith iteration, J is the loss function
of the model, w denotes model parameters, ytrue is the true
label for the input, ϵ is a configurable parameter that limits
maximum perturbation amount in given linf norm, and α is
the step size.

Moosavi-Dezfooli et al. proposed the Deepfool attack al-
gorithm [7], which is distinct from the gradient-based attack
mentioned above. The idea behind this attack is that neural
network models behave like linear classifiers, with hyperplanes
separating the classes. At each iteration, the algorithm starts at
the initial input point xt and finds the closest hyperplane as
well as the smallest perturbation amount, which is the orthogo-
nal projection to the hyperplane. The algorithm then computes

2024 IEEE Middle East Conference on Communications and Networking (MECOM)

182
Authorized licensed use limited to: Ericsson. Downloaded on December 19,2025 at 06:42:45 UTC from IEEE Xplore. Restrictions apply.

xt+1 by adding the smallest perturbation to the xt and checks
for misclassification. Typically, the generated adversarial sam-
ple is in close proximity to the model’s decision boundary.
There is also Carlini&Wagner [8] attack algorithm which might
be considered as one of the strongest attack algorithms so far.
The attack is reformulated by the authors as an optimization
problem that can be resolved by gradient descent. The level of
prediction score for generated adversarial sample can be altered
using the algorithm’s confidence parameter. Application of
this attack with default setting (confidence set to 0) would
often result in adversarial samples near decision boundary
for a normally trained model. And high confident adversaries
generally located further away from decision boundary.

In the Black-Box attack scenario, as opposed to the White-
Box setup, the adversary only has access to the outputs of the
target model (either only the decisions or all the probability
scores). For the cases where the adversary has access to all
the probability scores of a given input, Ilyas et al. [9] and
Chen et al. [10] proposed score-based methods using zeroth-
order gradient estimation for craft adversarial perturbations.
An attacker has just access to decisions in a more practical
and realistic scenario that applies to the majority of AI-
as-a-Service implementations. Brendel et al. [10] introduced
Boundary Attack, which generates adversarial examples via
rejection sampling and achieves comparable performance with
state-of-the-art White-Box attacks. Nevertheless, their approach
requires a relatively large number of model queries, render-
ing it impractical for real-world applications. Later, Chen et
al. [11] introduced HopSkipJumpAttack which is a decision-
based attack method relied on an estimation of model’s gra-
dient direction and binary-search procedure for approaching
the decision boundary. The powerful part of this attack is
that it requires significantly fewer model queries than previ-
ously proposed decision-based Black-Box attack algorithms,
yet achieves competitive performance. Finally, Andriushchenko
et. al. [12] proposed Square Attack which is again a query
efficient Black-Box attack that is not based on model’s gradient
and can break defenses that utilize gradient masking.

Figure 4 shows where the adversarial samples crafted with
different attack algorithms are projected on the imaginary 2D
manifold of high dimensional decision space.

IV. DEFENSE AGAINST ADVERSARIAL ATTACKS

As a defense solution, adversarial training [5] is suggested, in
which the robustness of the deep learner is increased by training
it using adversarial samples. This technique is mathematically
represented as a Mini-max game. The end result of the entire
procedure is a model that should be resilient to adversarial
attacks used during the training of the model. Nevertheless,
adversarially trained models remain vulnerable to Black-Box
attacks [11]. Quantifying uncertainty in model predictions and
avoid making decision when there is high uncertainty level
has been suggested by some studies [13] in the literature. This
has been shown to be effective in some situations and keep the

Fig. 4: Projection of adversarial samples on the imaginary 2D
submanifolds.

model from making mistakes by discarding the prediction when
the model is not confident. However, this choice might also
result the model to abstain even there is a chance of making a
correct prediction. Furthermore, it is known that the model may
make wrong prediction with a high degree of confidence for
particular adversarial samples. The adversary will eventually be
able to trick the model in these cases because there will be low
quantified uncertainty, preventing the model from abstaining.

Regarding the studies which specifically aiming to address
inference query-based Black-Box attack scenarios, Chen et.
al. [14] proposed a method which requires the remote AI sys-
tem to store the previous input data per user account basis and
compare the historical data with the current input to the model.
The idea is that the adversary adds a minimal perturbation
amount each time and one can make intelligent data analysis
on the model inputs to capture the similarity. Nevertheless, this
method increases the memory complexity and add a burden to
the AIaaS platform. And this method can only work if the
adversary persists sending the adversarial input from only one
account. If the adversary sends data from multiple accounts, the
defense method will eventually fail. Li et. al. [15] enhanced the
idea of Chen et. al. and proposed a method which requires less
memory for the remote AI system. And their method can work
even in the case of adversary implementing the attack using
multiple different accounts. However, their method still needs
additional memory within the remote AI system. And these
methods only help to detect adversarial samples. They don’t
give any clue about the actual class of the input sample.

A. Proposed Defense Method

Our proposed solution is a defense mechanism to mitigate
inference queries based Black-Box attacks (evasion attacks)
during inference phase of the AI/ML model. It aims to defend
against the attack cases when the probability of the wrongly
classified class is close to the probability of the actual class
which potentially means highly uncertain predictions. That is
the impact of the proposed method is high against the adver-
sarial samples which are located close to decision boundary

2024 IEEE Middle East Conference on Communications and Networking (MECOM)

183
Authorized licensed use limited to: Ericsson. Downloaded on December 19,2025 at 06:42:45 UTC from IEEE Xplore. Restrictions apply.

of the model. And this is the case for Black-box adversarial
attack scenarios as the adversary does not have access to the
model details and therefore does not have a chance to optimize
the adversarial perturbation to force the model to make over
confidently wrong prediction. Some other known White-box
adversarial attacks (Deepfool, Carlini&Wagner with default
setting) fall into this category as well.

Our solution lets the model owner to quantify the uncer-
tainty estimates of the model during prediction time. And for
the highly uncertain cases, we suggest updating the model
weights in a direction to minimize quantified uncertainty value
(aleatoric uncertainty). This can be considered as a one-time
update operation specific to the suspicious input. And after the
model has been updated, the prediction will be done with this
updated model. After the prediction is over for the suspicious
input, the model owner returns back to the old model. Figure 5
shows an high level illustration of our method.

Fig. 5: High level illustration of our method.

B. Advantages of the Proposed Solution

Our solution provides robustness to the exposed ML mod-
els for the cases where the adversarial samples are located
close to the decision boundary of the model. Existing Black-
box adversarial attacks and some of the known White-box
adversarial attack algorithms (i.e. Deepfool or Carlini&Wagner
attacks) result in this type of adversarial samples. The proposed
method lets the model to predict these kinds of malicious inputs
correctly. Besides, it can also be used to detect the adversarial
samples. If the initial prediction H(x) and the prediction of
the updated model H ′(x) are different, then it is a sign of
potential evasion attack incident. Since the method can detect
the adversarial samples and since the method also knows the
true class (H ′(x) = y′) of the adversarial sample, the model
owner can have a chance to store these adversarial samples
(x, y′) pairs and use them for adversarial training purposes. It
is known that crafting adversarial perturbation is a computa-
tionally costly process. Via our proposed solution, the model
owner can have a chance to use the adversarial samples free
of charge, without needing to craft them (adversarial training
for free). The algorithmic details are provided in Algorithm 1.
Finally, it is known that adversarial samples are transferable.

That is; any adversarial sample that can fool a classifier will
mostly fool any other classifier that is trained on the same task.
Based on this fact, if an adversary targets publicly available AI
service and can craft a successful adversarial sample, then it
might be risk for other similar AI services as well. Therefore,
successfully defending open access AI services can also secure
the other AI services as well. Figure 6 shows is a detailed
implementation of our solution during a Black-box Adversarial
Attack. It might be argued that our proposed solution might
introduce additional latency in the AI model responses and
requires additional resources. However, the level of robustness
it provides might compensate this potential trade-off.

Fig. 6: Detailed implementation of our solution during a Black-
Box Adversarial Attack.

Algorithm 1: The proposed defense algorithm.
Input: x, δ
Output: y

1 Compute initial output y through AI-model: Hw(x);
Quantify uncertainty level U of initial output;

2 if δ < U then
3 Update AI-model weights in a direction to reduce

uncertainty of output and get Ĥw′

4 Compute updated output y′ : Ĥw′(x)
5 Save input and updated output pair x, y′ for later

stages of adversarial training of AI-model
6 Discard updated AI-model Ĥw′(x) and revert to

initial AI model Hw(x)
7 return y′

8 else
9 return y

For the uncertainty quantification, we have used the efficient
approach which was initially proposed by Gal et al. [16] and
then improved by Kwon et. al. [17]. Gal et al. showed that
a DNN model with inference time dropout is equivalent to
a Bayesian approximation of the Gaussian process. Inference
time dropout acts as an ensemble approach. In each single
ensemble model, the system needs to drop out different neu-
rons in network layers according to the dropout ratio in the
prediction time. The overall prediction uncertainty is approxi-

2024 IEEE Middle East Conference on Communications and Networking (MECOM)

184
Authorized licensed use limited to: Ericsson. Downloaded on December 19,2025 at 06:42:45 UTC from IEEE Xplore. Restrictions apply.

mated by finding the variance of the probabilistic feed-forward
MC dropout sampling during prediction time. Then, Kwon
et al. suggested an alternate approach for quantifying both
epistemic and aleatoric uncertainty in classification models.
In the author’s method, the variance of the prediction is
comprised of two parts that represent aleatoric and epistemic
uncertainty. Let Hω̂ represents the neural network model with
parameters denoted by ω̂, the number of different output classes
is represented by k, then the prediction y of a model for any
test sample x given the weights of the model is denoted by
p(y|x,Hω̂) where y ∈ Rk. The formulation for their method
is given below:

V arp(y|x,Hω)(y) = Ep(y|x,Hω)(y
⊗2)− Ep(y|x,Hω)(y)

⊗2 (3)

=
1

T

T∑
t=1

[diag{p(y|x,Hω̂t)} − p(y|x,Hω̂t)
⊗2]︸ ︷︷ ︸

aleatoric

(4)

+
1

T

T∑
t=1

[p(y|x,Hω̂t)) − p̂(y|x,Hω̂t)]
⊗2

︸ ︷︷ ︸
epistemic

(5)

where, p̂(y|x,Hω̂t
) =

∑T
t=1 p(y|x,Hω̂t

) and y⊗2 = yyT

Equation 4 and 5 output a matrix of shape k × k where the
diagonal elements represent the variance of each output class
and we used the mean of the diagonal terms for quantifying
uncertainty metrics for a given input x. In our study, we opted
to use aleatoric uncertainty and used Equation 4 for uncertainty
quantification.

V. SIMULATION RESULTS

We started our experiments by first training two different
CNN models using MNIST (Digit) and CIFAR-10 datasets and
attained accuracy rates of 99.44% and 82.43%, respectively.
The architectures of our CNN models and the hyper parameters
used in training are listed in Table I and Table II. We continued
our experiments by applying several different attack types on
each test sample to craft their adversarial counterparts. The
selected set of attacks for our study include both Black-Box
attack and White-Box attack algorithms. We then tried to feed
those adversarial samples back to the target models. And we
performed these steps with and without our defense solution
enabled. For the one time model update operation which is
available in Step 3 of Algorithm 1, we used Adam optimizer
with a learning rate of 0.001. For the choice of δ, we suggest
to inspect the uncertainty values of the model for all the correct
and wrong predictions on test dataset, calculate the mean values
and then take the average of these two. So for MNIST, we set
δ = 0, 0125 and for CIFAR10 we set δ = 0, 0114. The results
of our experiments are provided in Table III and IV.

TABLE I: CNN model architectures

Dataset Layer Type Layer Info

MNIST

Conv. (padding:1) + ReLU 3× 3× 16
Max Pooling 2× 2

Conv. (padding:1) + ReLU 3× 3× 16
Max Pooling 2× 2

Conv. (padding:1) + ReLU 3× 3× 32
Dropout p : 0.25

Conv. (padding:1) + ReLU 3× 3× 32
Dropout p : 0.25

Fully Connected + ReLU 1568× 100
Dropout p : 0.25

Fully Connected + ReLU 100× 10

CIFAR10

Conv. (Padding = 1) + ReLU 3× 3× 32
Conv. (Padding = 1) + ReLU 3× 3× 64

Max Pooling (Stride 2) 2× 2
Conv. (Padding = 1) + ReLU 3× 3× 128
Conv. (Padding = 1) + ReLU 3× 3× 128

Max Pooling (Stride 2) 2× 2
Conv. (Padding = 1) + ReLU 3× 3× 256

Dropout p : 0.1
Conv. (Padding = 1) + ReLU 3× 3× 256

Dropout p : 0.1
Max Pooling (Stride 2) 2× 2

Fully Connected + ReLU 4096× 512
Dropout p : 0.25

Fully Connected + ReLU 512× 512
Dropout p : 0.25

Fully Connected + ReLU 512× 10

TABLE II: Hyperparamters

MNIST CIFAR10
Optimizer Adam Adam
Learning Rate 0.001% 0.001%
Batch Size 30 75
number of epochs 30 75

TABLE III: Experimental results on MNIST dataset

Attack Success Rate
Without Our Defense

Attack Success Rate
With Our Defense

HopSkipJump
ℓinf eps = 0.15

79,02% 6,10%

Boundary
ℓ2 eps = 2.016

87,02% 6,73%

Square
ℓinf eps = 0.15

91,81% 20,08%

Carlini & Wagner
ℓ2 eps = 2.016
conf = 0

94,58% 10,41%

Deepfool
ℓinf eps = 0.15

67,59% 13,14%

The results show that our proposed solution introduces
considerable degree of robustness to the AI models which
might be deployed to the cloud and consumed in a as-a-
service manner. And the performance of our method is higher
in inference queries based Black-Box attacks compared to
White-Box attacks where the attacker has more control on
the produced adversarial samples. Finally, we have checked
the effect of our proposed method on the natural (clean)
performance of the model. To do this, we used all the clean test
data samples from MNIST dataset and measured the accuracy

2024 IEEE Middle East Conference on Communications and Networking (MECOM)

185
Authorized licensed use limited to: Ericsson. Downloaded on December 19,2025 at 06:42:45 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Experimental results on CIFAR10 dataset

Attack Success Rate
Without Our Defense

Attack Success Rate
With Our Defense

HopSkipJump
ℓinf eps = 4/255

89.24% 12.69%

Boundary
ℓ2 eps = 0.42

91.58% 13.34%

Square
ℓinf eps = 4/255

94.01% 22.23%

Carlini & Wagner
ℓ2 eps = 0.42
conf = 0

98.46% 18.60%

Deepfool
ℓinf eps = 4/255

94.69% 24.86%

of the model when our method is enabled. We get 99.37%
accuracy which is almost identical to the original performance
of the model.

For the samples where the model is introduced to an ad-
versarial sample and still makes a correct prediction via our
proposed one-time model update operation, the model owner
has a chance to save the adversarial sample for later stages
of adversarial training. This way, the robustness of the model
might be further improved without any need of spending extra
resources for crafting these adversarial samples beforehand.
Our proposed method and the adversarial training can be seen
complementary and used together. In Figure 7, you can see
the automated workflow of ML pipeline which consists of
sequential stages for developing and utilizing an ML model.

Fig. 7: Proposed updates to the MLOps Pipeline to enable our
solution.

VI. CONCLUSION

In this paper, we proposed a novel method to defend the
AI models deployed and offered in AIaaS framework from
potential Black-Box attacks. Our solution can also be used
to identify the adversarial samples introduced by the mali-
cious parties to the AI apps in inference phase, which then
helps to benefit from the detected adversarial samples in later
stages of adversarial (re-)training. We empirically shown the
effectiveness of the proposed approach and suggested possible
interactions within the key components of the MLOps pipeline
to enable our solution. As a future work, we plan to elaborate
on whether our proposed method is applicable to other types

of Black-Box attacks such as model inversion or membership
inference attacks.

ACKNOWLEDGMENT

This work was supported by The Scientific and Techno-
logical Research Council of Turkey (TUBITAK) through the
1515 Frontier Research and Development Laboratories Support
Program under Project 5169902, and has been partly funded by
the European Commission through the Horizon Europe/JU SNS
project ROBUST-6G (Grant Agreement no. 101139068).

REFERENCES

[1] B. Kim, Y. Shi, Y. E. Sagduyu, T. Erpek, and S. Ulukus, “Adversarial
attacks against deep learning based power control in wireless communi-
cations,” in 2021 IEEE Globecom Workshops, 2021, pp. 1–6.

[2] O. F. Tuna, F. E. Kadan, and L. Karacay, “Practical adversarial attacks
against ai-driven power allocation in a distributed mimo network,” in
ICC 2023 - IEEE International Conference on Communications, 2023,
pp. 759–764.

[3] “HEXA-X Project, D5.3: Final 6G architectural enablers and technolog-
ical solutions,” https://hexa-x.eu/.

[4] Z. Zheng and P. Hong, “Robust detection of adversarial attacks by
modeling the intrinsic properties of deep neural networks,” in Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018.

[5] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations, 2015. [Online]. Available: http://arxiv.org/abs/1412.6572

[6] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial
examples in the physical world,” 2017. [Online]. Available:
https://arxiv.org/abs/1607.02533

[7] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” 2016.

[8] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” 2017.

[9] A. Ilyas, L. Engstrom, and A. Madry, “Prior convictions: Black-box
adversarial attacks with bandits and priors,” 2019.

[10] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
2018.

[11] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack:
A query-efficient decision-based attack,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1277–1294.

[12] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: A query-efficient black-box adversarial attack via random search,”
in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, Eds. Cham: Springer International Publishing, 2020, pp.
484–501.

[13] B. Kompa, J. Snoek, and A. L. Beam, “Second opinion needed: commu-
nicating uncertainty in medical machine learning,” npj Digital Medicine,
vol. 4, no. 1, p. 4, Jan 2021.

[14] SPAI ’20: Proceedings of the 1st ACM Workshop on Security and
Privacy on Artificial Intelligence. New York, NY, USA: Association
for Computing Machinery, 2020.

[15] H. Li, S. Shan, E. Wenger, J. Zhang, H. Zheng, and B. Y. Zhao,
“Blacklight: Scalable defense for neural networks against Query-Based
Black-Box attacks,” in 31st USENIX Security Symposium (USENIX
Security 22), Boston, MA, 2022, pp. 2117–2134.

[16] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” 2016.

[17] Y. Kwon, J.-H. Won, B. J. Kim, and M. C. Paik, “Uncertainty quan-
tification using bayesian neural networks in classification: Application
to biomedical image segmentation,” Computational Statistics & Data
Analysis, vol. 142, p. 106816, 2020.

2024 IEEE Middle East Conference on Communications and Networking (MECOM)

186
Authorized licensed use limited to: Ericsson. Downloaded on December 19,2025 at 06:42:45 UTC from IEEE Xplore. Restrictions apply.

