
 

 

   

 

 

 
Smart, Automated, and Reliable Security Service Platform for 6G 

 

 

Deliverable D3.2 

Initial Report on 6G Trustworthy and 

Sustainable AI Architecture and 

Requirements for Integrating Selected 

XAI Measures 
 

 

 

 

 

 

 

  

ROBUST-6G project has received funding from the  Smart Networks and Services Joint Undertaking 

(SNS JU)  under the European Union’s  Horizon Europe research and innovation programme  under Grant 

Agreement No 101139068. 

 

Date of delivery: 31/03/2025 Version: 1.0 

Project reference: 101139068  Call: HORIZON-JU-SNS-2023 

Start date of project: 01/01/2024 Duration: 30 months 

  

https://digital-strategy.ec.europa.eu/en/policies/smart-networks-and-services-joint-undertaking
https://digital-strategy.ec.europa.eu/en/policies/smart-networks-and-services-joint-undertaking
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en


 

 
 Deliverable D3.2 

 

Dissemination level: Public Page 2 / 74 
 

Document properties: 

Document Number: D3.2 

Document Title: Initial Report on 6G Trustworthy and Sustainable AI 

Architecture and Requirements for Integrating Selected XAI 

Measures 

Editor(s): Arsenia Chorti (ENSEA), Ozgul Ayyildiz (GOHM) 

Authors: Enrique Tomás Martínez Beltrán (UMU), Manuel Gil Pérez 

(UMU), Fernando Torres Vega (UMU), Leyli Karaçay (EBY), 

Betül Güvenç Paltun (EBY), Ömer Tuna (EBY), Bartlomiej 

Siniarski (UCD), Geetika Arora (UCD), Chamara Sandeepa 

(UCD), Thulitha Senevirathna (UCD), Farah Abed Zadeh 

(UCD), Giovanni Perin (UNIPD), Nikolaos Pappas (LIU), 

Eunjeong Jeong (LIU), Marios Kountouris (EUR), Ioannis 

Pitsiorlas (EUR), Nour Jamoussi (EUR). 

Contractual Date of Delivery: 31/03/2025 

Dissemination level: PU 

Status: Final 

Version: 1.0 

File Name: ROBUST-6G D3.2_v1_0 

 

Revision History 

Revision Date Issued by Description 

0.1 01.02.2025 ROBUST-6G WP3 Initial draft with ToC 

0.2 15.02.2025 ROBUST-6G WP3 First draft with threat assessment and 

prevention 

0.3 05.03.2025 ROBUST-6G WP3 Second draft with 6G key technical enablers 

and selected cases 

0.4 10.03.2025 ROBUST-6G WP3 First complete draft 

0.5 20.03.2025 ROBUST-6G WP3 Second draft after internal review 

0.6 26.03.2025 ROBUST-6G WP3 Final complete draft after internal review 

1.0 31.03.2025 ROBUST-6G WP3 Final version 

 

Abstract 

The rapid evolution of mobile networks toward 6G is driven by the need for ultra-reliable, high-

performance, and intelligent communication systems. As AI becomes increasingly embedded in 

network security and management, ensuring its trustworthiness, sustainability, and transparency is 

paramount. This deliverable addresses these challenges by proposing AI-driven security mechanisms 

that align with the principles of robust, explainable, and energy-efficient security solutions. 

A key focus of this work is Trustworthy AI, which ensures that AI-based security mechanisms uphold 

privacy, fairness, robustness, and resilience against adversarial threats. The growing reliance on AI for 

intrusion detection, threat mitigation, and automated decision-making in 6G networks necessitates 

models that are transparent, interpretable, and free from biases. Additionally, Sustainable AI is a 

critical component, as 6G networks demand energy-efficient security solutions that optimize 

computational resources without compromising protection. AI-driven mechanisms must be designed 

to minimize power consumption while maintaining strong defenses against evolving cyber threats. 
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Furthermore, Explainable AI (XAI) is explored as a means to enhance transparency in AI security 

applications. By integrating XAI principles, security solutions become more interpretable, allowing 

stakeholders to understand, audit, and trust AI-driven decisions. 

This deliverable builds upon prior research by outlining methodologies for integrating these principles 

into AI security architectures for 6G networks. It provides a structured approach for designing AI 

models that balance performance, security, and energy efficiency while ensuring explainability. The 

findings serve as a foundation for further research and development, guiding the transition from 

conceptual frameworks to real-world implementation. By establishing AI as a core enabler of secure 

and resilient 6G systems, this work contributes to the long-term sustainability and trustworthiness of 

next-generation network infrastructures. 
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Executive Summary 

The transition to 6G networks introduces unprecedented opportunities and challenges in security, 

trustworthiness, and sustainability. This deliverable, D3.2, addresses these challenges by focusing on 

integrating Explainable AI (XAI) into the ROBUST-6G architecture, ensuring AI-driven security mechanisms 

are transparent, accountable, and energy-efficient. 

The document builds on prior research (D3.1), which identified key AI-related security threats, to define 

architectural requirements and methodologies for implementing trustworthy AI security in 6G networks. It 

explores three foundational pillars: 

1. Trustworthy AI for 6G Security - Establishes security, privacy, robustness, and fairness in AI-based 

security mechanisms. 

2. Sustainable AI for Energy-Efficient Security - Optimizes AI-driven security solutions to minimize 

resource consumption while maintaining robust protection. 

3. XAI-Based Explainability and Transparency - Enhances trust and interpretability in AI-driven 

security decisions, ensuring compliance with regulatory and ethical standards. 

The deliverable outlines security risks in AI/ML training for 6G, focusing on adversarial attacks, model 

poisoning, vulnerabilities in federated learning, and potential biases in AI-driven security decisions. It proposes 

innovative security mechanisms leveraging XAI to mitigate these threats by improving the interpretability and 

accountability of AI models. Additionally, it discusses proactive defense mechanisms, such as adversarial 

training, secure model aggregation techniques in federated learning, and AI-driven anomaly detection 

frameworks. 

Beyond security, the document highlights the need for resilience and reliability, ensuring 6G networks can 

self-recover and dynamically allocate resources to mitigate failures and cyber threats. It also explores 

sustainability and energy efficiency, incorporating energy harvesting, optimized network deployment, and 

green communication protocols to minimize environmental impact. Moreover, AI-driven optimization plays a 

crucial role in automating decision-making, enhancing network efficiency, and enabling adaptive resource 

allocation. The framework further supports heterogeneous network integration, ensuring seamless 

interoperability among satellite, terrestrial, and edge computing infrastructures. 

Furthermore, this deliverable sets the foundation for subsequent research (D3.3) by defining conceptual and 

technical frameworks for AI-driven security integrations, emphasizing real-time threat detection and adaptive 

security responses. The ultimate goal is to enhance resilience, reliability, and scalability in 6G security 

operations while balancing performance, sustainability, and ethical considerations. 
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1 Introduction 

1.1 Motivation, objectives, and scope 

The transition toward 6G networks is driven by the increasing demands of hyper-connected society, offering 

advanced network capabilities and greater computational power. While the 6G landscape represents a 

significant paradigm shift with mobile networks becoming deeply integrated into all aspects of life, this 

integration gives rise to certain challenges that should be addressed to ensure robust, secure and efficient 

network operations. Especially the need for trustworthy, sustainable and transparent (explainable) AI 

architecture to support upcoming digital infrastructures. This need originates from a number of key 

observations.  

• Sustainability as a core design principle: 6G networks must support energy-efficient AI-driven 

security mechanisms that minimize resource consumption while maintaining strong protection 

against cyber threats. 

• Trustworthiness as a non-negotiable requirement: AI-based security solutions must ensure privacy, 

robustness, fairness, and resilience against adversarial threats. 

• Increasing role of AI in network operations: AI is integral to automating security decisions, intrusion 

detection, and real-time threat mitigation, necessitating reliability and transparency. 

To address these challenges, this deliverable is structured around three foundational pillars.  

• Trustworthy AI for 6G Security: This pillar focuses on establishing and maintaining high 

standards of security, privacy, robustness and fairness in AI implementations. Given the increasing 

dependency on AI for intrusion detection, threat mitigation and decision making, it is necessary to 

enhance the reliability, transparency and fairness of AI models deployed in 6G networks. 

• Sustainable AI for energy-efficient security mechanisms: Energy efficiency becomes an 

important challenge to address with 6G networks supporting a remarkable level of connectivity and 

computation. This pillar ensures the need for low-power AI-driven security solutions, optimizing 

resource usage. 

• XAI based explainability and transparency for AI-driven security: The security solutions should 

have the ability to understand, interpret, and audit the decision-making process. This can be achieved 

by utilizing Explainable AI (XAI) that would ensure that the security mechanisms are accountable, 

transparent and adaptable. 

      Figure 

1. Progression of Work Package 3 deliverables: From Threat Assessment to Final Evaluation  

This deliverable serves as the foundation for integrating AI-driven security mechanisms into 6G by defining 

key principles and methodologies for Trustworthy AI, Sustainable AI, and XAI-based security solutions. While 

all three pillars are introduced, the primary focus of this deliverable is the integration of XAI into the 

ROBUST-6G architecture. As presented in       Figure , D3.1 served as a critical foundation for the later 

deliverables by providing an in-depth threat assessment and prevention strategies for AI-driven security 

challenges in 6G networks. This deliverable identifies key AI-related security threats, offering insights into 
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vulnerabilities and necessary countermeasures. The findings in D3.1 directly informed the design of D3.2 by 

shaping the security objectives and highlighting areas where XAI could enhance trust and resilience. 

Additionally, the AI security solutions and prevention mechanisms outlined in D3.1 provided the initial 

direction for developing trustworthy AI architectures, which later became the focus of D3.2. 

D3.2 lays the groundwork for D3.3 by defining the conceptual and technical framework for integrating 

trustworthy and sustainable AI security mechanisms into 6G networks. It proposes several solutions from each 

of the three pillars (Trustworthy AI for 6G Security, Sustainable AI for energy-efficient security mechanisms 

and XAI-based explainability and transparency for AI-driven security) and establishes a structured approach 

to securing AI/ML training and execution processes while incorporating energy-efficient techniques. 

Furthermore, D3.2 introduces a set of requirements for implementing XAI measures to enhance transparency 

and reliability in AI-driven security solutions. These requirements will act as the blueprint for D3.3, which 

will transition from theoretical foundations and preliminary work to the actual development, prototyping and 

integration of security functionalities based on the principles introduced in D3.2. 

The key difference between D3.2 and D3.3 is that while D3.2 focuses on defining the architecture and 

requirements for integrating XAI, D3.3 moves toward the practical implementation of these concepts. D3.2 

presents the theoretical underpinnings and initial specifications, ensuring that AI-driven security measures are 

aligned with principles of trustworthiness and sustainability. In contrast, D3.3 translates these concepts into 

working prototypes, specifying the mechanisms and technologies used to develop AI-driven security 

functionalities. D3.2 is, therefore, a preparatory stage that informs the design, while D3.3 is the realization of 

those designs through tangible security solutions. 

D3.4 builds upon both D3.2 and D3.3 by conducting a final assessment of the feasibility and resilience of the 

security measures developed and prototyped. It evaluates the impact of these mechanisms on AI accuracy and 

sustainability within the 6G ecosystem, determining how effectively the proposed solutions enhance security 

without introducing excessive complexity or inefficiencies. By integrating findings from D3.2 and D3.3, D3.4 

provides a comprehensive analysis of the strengths and limitations of the implemented XAI-based security 

measures. Additionally, it establishes a refined/improved and more informed set of requirements for future 

XAI integration feasibility, ensuring that the developed security functionalities can be effectively adapted and 

deployed in real-world 6G networks. 

1.2 Document structure 

This deliverable is organized into four key technical chapters, each addressing critical aspects of securing 

AI/ML training for 6G networks while aligning with the three foundational pillars of Trustworthy AI, 

Sustainable AI, and XAI-driven security. The following chapters provide a comprehensive analysis of security 

challenges, propose innovative AI-driven security mechanisms, and outline the role of XAI in improving AI 

security transparency and accountability. 

Chapter 2 examines the security challenges in securing AI/ML training within the ROBUST-6G Trustworthy 

and Sustainable AI framework. Unlike D3.1, which provides a broad assessment of adversarial and privacy-

related risks in AI/ML for 6G, this chapter contextualizes these challenges within the evolving 6G architecture, 

focusing on how distributed intelligence, federated learning, and edge computing introduce new security 

complexities that require targeted mitigation strategies. Extending the discussion in D3.1, this chapter analyses 

how identified threats manifest in AI/ML training environments, particularly in 6G-specific scenarios. While 

D3.1 classifies adversarial attacks such as poisoning and evasion, this chapter assesses their impact on 

federated learning and distributed AI models, highlighting necessary defences. Similarly, privacy risks such 

as model inversion and membership inference attacks are revisited to reflect their implications in decentralized 

AI training, a perspective not extensively covered in D3.1. The chapter also explores security risks arising 

from edge computing, collaborative AI training, and multi-stakeholder trust issues, emphasizing mitigation 

approaches suited for ROBUST-6G, thereby bridging the gap between theoretical threat assessments and 

practical security solutions for 6G AI deployments. 

Chapter 3 presents an in-depth exploration of security measures designed to enhance the trustworthiness, 

robustness, and resilience of AI-driven security mechanisms in 6G. The focus is on mitigating threats such as 

adversarial attacks, model poisoning, and vulnerabilities in federated learning. It gives an overview of key 

components that ensure the security, reliability, and resilience of AI-based security mechanisms in 6G. This 
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section also investigates how attackers can manipulate AI services and discusses existing mitigation strategies, 

analyses poisoning attacks that manipulate training data to degrade AI model performance and discusses an 

Alternating Direction Method of Multipliers (ADMM)-based approach to ensure secure and decentralized 

federated learning (FL) in 6G. The next subsection explores how Explainable AI (XAI) improves AI 

transparency and enhances user trust, discusses how to ensure fairness in AI-driven security models, reducing 

bias in 6G security solutions, and analyses how XAI techniques can enhance the detection and prevention of 

adversarial threats to AI models in 6G networks. Additionally, it introduces XAI-based approaches to Intrusion 

Detection Systems (IDS) and their role in 6G security. 

 

Given the increasing energy demands of AI training and inference, Chapter 4 explores energy-efficient 

security mechanisms to ensure sustainable AI integration into 6G networks. It describes an alternative 

optimization approach using the ADMM to optimize energy consumption in Spiking Neural Networks for 

security tasks. This chapter also discusses AI solutions designed to optimize power consumption and reduce 

computational overhead while ensuring strong security and introduces novel methodologies for optimizing 

computational resource allocation while maintaining security and trustworthiness in federated learning 

environments. 

Chapter 5 focuses on the integration of XAI into security mechanisms for enhanced transparency, 

accountability, and interpretability in AI-driven security models for 6G. It proposes a framework integrating 

XAI principles into 6G security to ensure clear model decision-making and transparency. It also discusses 

methods to assess the effectiveness of XAI-enabled security solutions in 6G environments. Additionally, the 

last subsection outlines best practices and regulatory considerations for implementing XAI-based security 

frameworks, ensuring alignment with SNS objectives and broader 6G standardization efforts. 

2 Challenges in Securing AI/ML Training for 6G 

While D3.1 presented a broad threat assessment, including adversarial and privacy-related risks to AI/ML in 

6G, this deliverable shifts the focus toward the specific challenges in securing AI/ML training within the 

ROBUST-6G Trustworthy and Sustainable AI framework. This chapter is necessary to contextualize security 

challenges within the evolving 6G architecture, emphasising how distributed intelligence, federated learning, 

and edge computing introduce new security complexities that require targeted mitigation approaches. 

Unlike D3.1, which classifies and evaluates AI security threats, this chapter extends this discussion by 

exploring how these threats manifest in AI/ML training environments. The chapter systematically analyses 

adversarial attack risks, privacy concerns, and decentralized security challenges in AI/ML model training, 

particularly within 6G-specific scenarios. For example, while D3.1 identifies adversarial attacks like poisoning 

and evasion, this deliverable assesses their impact on federated learning and distributed AI models, detailing 

how AI models must be designed to withstand these evolving threats. Similarly, privacy risks in AI models, 

such as model inversion and membership inference attacks, are re-evaluated in this deliverable to reflect their 

implications in decentralized AI training—something that D3.1 does not address in depth. 

Additionally, the chapter plays a crucial role in establishing the security architecture by detailing trustworthy 
and sustainable AI frameworks. It not only defines mitigation strategies but also provides a foundational 

reference for subsequent deliverables (D3.3 and D3.4), ensuring a comprehensive and integrated approach to 
AI-driven security in 6G networks. The security mechanisms explored in this deliverable are not just 

theoretical but provide practical design considerations for implementing trustworthy and sustainable AI in 6G, 

ensuring that the AI/ML training pipeline remains resilient and energy-efficient. Moreover, this deliverable 

introduces security-by-design principles, ensuring that the AI models developed in D3.3 (the prototype phase) 

inherit robust security features from the start. 

2.1 Risks of Adversarial Attacks on AI/ML Models in 6G Environments 

The increased reliance on AI in 6G networks introduces a broad attack surface, exposing critical components 
to adversarial manipulations. These vulnerabilities arise primarily due to fundamental weaknesses in AI/ML 

models—such as overfitting, lack of robustness to input perturbations, poor generalization, and limited 

explainability—which adversaries can exploit to compromise system integrity and performance. As outlined 

in ROBUST-6G Deliverable D3.1, these inherent limitations make AI/ML models susceptible to a range of 
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attacks, including evasion, poisoning, inversion, and extraction attacks. Originally observed in domains like 

computer vision and NLP, adversarial threats have now emerged as a critical concern in 6G use cases. In this 

context, AI-driven functionalities—such as intelligent network slicing, resource management, and anomaly 

detection—become potential targets, leading to severe consequences like service disruption, network 

misconfiguration, and privacy violations. 

Adversarial attacks in 6G can be classified based on their objectives, techniques, and attack surfaces, as 

comprehensively analyzed in ROBUST-6G Deliverable D3.1, Section 3.1 (“Adversarial Threats”). This 

section outlines how vulnerabilities in AI/ML models—such as their sensitivity to data distribution shifts, 

overfitting, and lack of robustness to perturbations—contribute to the emergence of these threats. Among the 

most critical are data poisoning attacks, where adversaries inject manipulated samples into training datasets, 

causing models to learn corrupted patterns. In federated learning scenarios, even partial poisoning by a few 

malicious clients can significantly degrade global model accuracy. Attackers can target data used for functions 

like spectrum allocation or anomaly detection, causing AI models to make faulty decisions. Another notable 

threat is evasion attacks, which involve manipulating inputs at inference time to trigger misclassification. The 

Fast Gradient Sign Method (FGSM), discussed in D3.1 (Section 3.1.2), exemplifies how imperceptible 

perturbations can cause AI-based intrusion detection systems to fail, allowing malicious traffic to pass 

undetected. These attack vectors illustrate the pressing need to address AI model vulnerabilities in the security 

architecture of future 6G networks. 

Beyond these conventional adversarial techniques, more sophisticated attacks, such as model inversion and 

extraction pose severe threats to AI integrity in 6G. Attackers can leverage adversarial techniques to infer 

sensitive information about training data or extract proprietary AI models deployed in 6G networks. Model 

inversion attacks exploit the outputs of a model to reconstruct input data, posing privacy threats in AI-driven 

biometric authentication systems. Model extraction attacks, on the other hand, enable adversaries to replicate 

AI models used in network security functions, by repeatedly querying them and analysing the outputs. For 

instance, if a 6G telecom operator uses an AI-based IDS (potentially based on a proprietary model) to detect 

anomalous traffic patterns indicative of cyberattacks, an attacker could send a variety of inputs (traffic samples) 

to the system, some benign, some malicious, and observe the model’s responses. Over time, the attacker can 

build a (local) copy of the model that behaves similarly. With this replica, they (attackers/adversaries) can test 

various attack strategies offline until they find ones that evade detection, and then use them to bypass the real 

network’s security mechanisms. Open Radio Access Network (O-RAN) architectures further exacerbate these 

risks by introducing AI-based decision-making for network optimization. However, this openness also makes 

them susceptible to adversarial attacks. For example, attackers can manipulate AI-driven xApps and rApps 

that control resource allocation, leading to service degradation or unfair spectrum allocation. These 

vulnerabilities highlight the need for robust adversarial defences in AI-driven O-RAN environments. 

The risks and the consequences of adversarial attacks on AI models in 6G are profound, affecting both security 

and network performance. Service disruptions can occur when AI-driven radio resource management is 

compromised, leading to inefficient spectrum allocation, congestion, and degraded Quality of Service (QoS). 

Security breaches become more prevalent when evasion attacks successfully bypass AI-based anomaly 

detection systems, allowing malicious traffic or unauthorized users to infiltrate the network. Privacy violations 
are another major risk, as model inversion techniques enable attackers to extract sensitive user data from AI-

driven authentication and encryption systems. Additionally, implementing real-time adversarial defences in 
6G networks introduces significant computational costs, potentially impacting network efficiency. To better 

understand the scope and potential impact of these threats, Table 1 provides a structured risk assessment of 

key adversarial attacks in 6G environments, evaluating each based on severity and likelihood grounded in 

current research. 

Attack Type Description Severity Likelihood Justification 

Data 

Poisoning 

Injection of malicious 

data into training 

datasets, causing AI 

models to learn incorrect 

behaviors. 

High Medium In federated learning scenarios, poisoning a 

subset of data can significantly degrade global 

model performance. Given the decentralized 

nature of 6G networks, detecting and 

mitigating such attacks is challenging. 
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Evasion 

Attacks 

Crafting inputs during 

the inference phase to 

mislead AI models into 

incorrect classifications 

or predictions. 

High High Techniques like the Fast Gradient Sign Method 

(FGSM) can subtly alter inputs, causing 

misclassifications in AI models. In 6G 

networks, this can lead to misallocation of 

resources or failure to detect intrusions, 

directly impacting network performance and 

security. 

Model 

Inversion 

Extracting sensitive 

information about 

training data by 

querying the AI model, 

potentially 

compromising user 

privacy. 

Medium Low While model inversion poses significant 

privacy risks, executing such attacks requires 

substantial access and computational resources, 

making them less common. However, as 6G 

networks handle more personal data, the 

incentive for such attacks may increase. 

Model 

Extraction 

Duplicating a 

proprietary model by 

observing its outputs, 

leading to intellectual 

property theft and 

potential deployment of 

compromised models. 

Medium Medium The open nature of some 6G components, like 

Open RAN, may expose models to 

observation. Attackers can exploit this to 

replicate models, undermining competitive 

advantages and introducing malicious variants. 

Backdoor 

Attacks 

Introducing hidden 

functionalities into AI 

models that activate 

under specific 

conditions, allowing 

unauthorized control or 

access. 

High Low Embedding backdoors during the training 

phase requires significant access, but if 

successful, these attacks can provide persistent 

unauthorized control over network functions, 

posing severe security risks. 

Adversarial 

Perturbations 

Adding subtle, often 

imperceptible changes 

to inputs that cause AI 

models to err, affecting 

tasks like signal 

classification and 

channel estimation. 

High High Given the reliance on AI for real-time 

decisions in 6G, such perturbations can 

degrade performance, leading to issues like 

misallocation of resources or failure in 

detecting anomalies. The ease of crafting these 

perturbations contributes to their high 

likelihood. 

Table 1 Risk Assessment of Adversarial Attacks in 6G Networks 

To counter these threats, several defence strategies have been proposed to mitigate adversarial risks in 6G 

AI/ML models. One of the most widely studied approaches is adversarial training, which enhances model 

robustness by incorporating adversarial examples into the training dataset. This method allows AI models to 

learn how to resist perturbations, but it also increases computational complexity and may not generalize well 

to unseen attack types. Robust optimization techniques, such as certified defences and randomized smoothing, 

improve AI model resilience against adversarial perturbations. Certified defences provide mathematical 

guarantees that a model's predictions will remain unchanged within a certain range of input perturbations, 

while randomized smoothing adds noise to inputs and relies on probabilistic averaging to make the model's 

output more stable and resistant to small adversarial changes. These approaches ensure that small perturbations 

in input data do not significantly alter model predictions. Another promising avenue is AI-driven threat 

detection, which utilizes anomaly detection systems to monitor input data distributions and detect deviations. 

These systems rely on invariant-based adversarial detection, feature-based anomaly scoring, and ensemble 

detection techniques to filter out adversarial inputs. Furthermore, as 6G moves toward integrating quantum 

technologies, adversarial threats may evolve.  

As adversarial attack techniques evolve, future techniques must address several challenges. Developing 

efficient real-time defences is crucial, as current adversarial defence mechanisms impose high computational 

costs. Research should focus on lightweight, adaptive defences that can operate in real-time 6G environments. 
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Enhancing AI model explainability is another key area of focus, as XAI techniques can improve model 

interpretability, making it easier to detect and mitigate adversarial manipulations. Securing AI-driven O-RAN 

architectures should also be a priority, ensuring the integrity of intelligent network management systems. 

Additionally, blockchain-based federated learning can provide a decentralized security framework for AI 

training, preventing adversarial manipulation in collaborative learning environments. 

Adversarial attacks in AI/ML pose significant privacy threats in 6G networks, which rely on AI-driven 

decision-making, edge computing, and federated learning. Attackers can exploit adversarial techniques to 

manipulate models, extract sensitive user data, and compromise authentication systems. For example, model 

inversion attacks can reconstruct private training data, while adversarial perturbations can bypass security 

mechanisms, leading to privacy leaks in authentication and traffic analysis. These vulnerabilities highlight the 

need for robust defences against adversarial threats in 6G AI-powered applications. 

2.2  Privacy Concerns in AI Models 

Beyond security threats, adversarial attacks in AI-driven 6G systems also introduce serious privacy risks, 

making it crucial to address both aspects together. This dual challenge arises as organizations increasingly rely 

on AI to handle sensitive data, making privacy and security critical considerations. AI systems depend on large 

volumes of data to train algorithms and make predictions or decisions. This data may contain personal details 

and other identifiable information which can be processed by AI systems without adequate consent or 

transparency. For example, an AI trained on multiple datasets might unintentionally combine information in a 

way that reveals personal details or identifies individuals. Using inference, the prediction results of the model 

can also be used to infer sensitive information, such as linking user identity with sensitive attributes or 

reconstructing the sensitive training data. A real-world example of such privacy risk was highlighted during 

early 5G deployments in South Korea, where researchers demonstrated that location inference attacks could 

be launched by exploiting 5G handover mechanisms, revealing precise user movements over time. Another 

example involved telecom operator usage analytics, where AI-driven optimization of service quality was found 

to process subscriber behavioral patterns without adequate anonymization, raising concerns under GDPR about 

re-identification risks. These incidents reflect how privacy vulnerabilities in 5G—if left unaddressed—can 

propagate into more complex, AI-integrated 6G networks. 

To mitigate such risks, it is important to implement confidentiality protection such as encryption, access 

controls, and data anonymization to secure data both at rest and in transit against external threats, as well as 

apply data minimization strategies to reduce the volume of data collected and processed. Furthermore, the risk 

of internal threats, such as insider threats and data leakage, need to be considered.  

According to [ETSI+24], there are AI-specific properties of privacy which refer to the unique privacy concerns 

that arise in the context of artificial intelligence systems. These properties include data privacy, algorithmic 

transparency, privacy by design, user control, and accountability. AI systems rely on large volumes of data, 

which may include sensitive personal information. Ensuring data privacy is essential, and safeguards must be 

in place to comply with privacy regulations during the collection, storage, and use of personal data. Due to the 

complexity of AI algorithms, understanding decision-making processes can be challenging. Algorithmic 

transparency ensures individuals can comprehend how their data is used and verify that AI decisions are fair 

and unbiased. AI systems should integrate privacy measures from the outset, ensuring that personal data 

collection is minimal, security measures are implemented, and privacy policies are clear and accessible. 

Individuals should have control over their personal data, with the ability to access, modify, or delete it as 

needed. AI systems should provide clear options for users to manage their data and respect privacy preferences. 

Organizations developing and deploying AI systems must be accountable for protecting individuals' privacy, 

taking responsibility for breaches and implementing measures to prevent future incidents. 

ML models can be classified based on whether the learning task is centralized or distributed. In centralized 

learning, a single entity stores and processes all training data, and a model is trained on gathered data. In this 

type of learning, a single entity has access to all data, which arise privacy concerns. In distributed/federated 

learning, each participant trains its local model using local data and shares the model parameters with other 

participants to build a shared model. Although federated learning provides inherent privacy, studies show that 

protecting sensitive client training data could not be ensured solely by keeping the client training data local. 

The key roles in FL include central server and local clients. The adversary can compromise the central server 

and/or some or all local clients. In [LYM+22], it is stated that before the model is trained, malicious local 

clients may disturb the integrity, confidentiality, and availability of data and degrade the model. During the 

model training phase, a malicious local client could also manipulate its data, model gradients, and parameters. 
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As a result, if adversaries manage to compromise local clients, they can disrupt the integrity of the training 

dataset or the model, thereby degrading the performance of the global model. Additionally, the malicious 

central server may also carry out passive or active inference attacks and by having access to intermediate model 

update parameters during federated learning, might reveal information related to the private training data of 

clients. After the model is trained, the global model is deployed onto local client devices, regardless of their 

participation in the training process. The gradients leakage attacks, membership inference attacks, attribute 

inference, and model inversion attacks are types of data leakage attacks that have been studied in distributed 

learning environments. 

2.3  Challenges Posed by the Decentralized and Highly Dynamic Nature of 6G 

As 6G builds upon the foundation of 5G with advancements in ultra-low latency, massive connectivity, and 

pervasive intelligence, its decentralized and dynamic nature introduces new security and privacy risks. Unlike 

traditional centralized models, where data is collected and processed in a secure data center, 6G relies heavily 

on federated learning and edge AI, where data remains distributed across multiple edge nodes and user devices. 

This increases exposure to adversarial attacks, such as data poisoning and model inversion attacks, where 
malicious actors can manipulate training data or extract sensitive information from models. Second, network 

heterogeneity and dynamic topology introduce vulnerabilities. 6G networks are expected to support various 
devices, ranging from autonomous vehicles to IoT sensors, each with varying computational capabilities and 

security standards. The dynamic nature of these networks, characterized by frequent topology changes due to 

device mobility and network slicing, makes it challenging to establish consistent security policies and trust 

mechanisms. Third, resource constraints at the edge limit the implementation of robust security mechanisms. 

Unlike centralized AI/ML systems that operate in data centers with ample computational resources, edge 

devices in 6G networks often have limited processing power, storage, and energy. This restricts the ability to 

employ advanced cryptographic techniques, secure enclaves, or continuous authentication, thereby increasing 

exposure to attacks such as model stealing and inference-time adversarial attacks. Fourth, trust and 

authentication in decentralized learning become more complex. Traditional AI/ML models rely on a trusted 

central authority to validate training data and model updates. In 6G, the absence of such a central entity 

necessitates using blockchain-based solutions or zero-trust architectures to ensure the integrity and authenticity 

of model updates. However, these solutions introduce their challenges, including scalability, latency, and the 

need for consensus mechanisms that can operate efficiently in highly dynamic environments. Lastly, 

adversarial AI and emerging attack vectors pose a significant challenge. As AI becomes more integral to 6G 

network management and optimization, attackers can exploit vulnerabilities in ML models through adversarial 

examples, evasion attacks, or backdoor injections. The decentralized nature of 6G makes detecting and 

mitigating these threats more difficult, as model updates and training processes are distributed across multiple 

untrusted nodes. 

Addressing these challenges requires a multi-faceted approach, including developing robust federated learning 

frameworks, lightweight cryptographic techniques, adaptive security policies, and AI-driven anomaly 

detection systems. In parallel, standardization bodies such as ETSI, 3GPP, and ITU-T have been actively 

evolving their frameworks to address these emerging risks. For instance, ETSI ISG PDL (Permissioned 

Distributed Ledger) explores integrating blockchain and decentralized identity management to improve trust 

in collaborative AI systems. Similarly, 3GPP SA3 is advancing security architectures for edge and AI-native 

networks, introducing concepts like zero-trust architectures and secure federated learning models. The ITU-T 

Focus Group on Autonomous Networks (FG-AN) is also outlining trustworthiness metrics and decentralized 

control models to guide AI system governance in highly dynamic 6G environments. These evolving standards 

aim to formalize key aspects of AI-driven, decentralized infrastructures—including model update validation, 

distributed trust management, and privacy-preserving mechanisms—thereby enabling secure, interoperable, 

and scalable deployments. Without proactive security measures and aligned standardization efforts, the 

decentralized and dynamic nature of 6G could undermine the reliability and trustworthiness of AI/ML 

applications in next-generation networks. 
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3 Trustworthy AI for 6G 

3.1  Components for Enhancing AI/ML Security and Resilience in 6G  

3.1.1 Adversarial attacks against AI-as-a-Service and defence-EBY 

Adversarial attacks have the potential to undermine the security of AI-driven networks, creating significant 

risks, especially in areas like telecommunications, where security is crucial. This contribution focuses on 

inference query-based Black-Box attacks that may target AI/ML models deployed in an AI-as-a-Service 

(AIaaS) framework and introduces a defence mechanism to counter these attacks. Our approach, as presented 

in Figure 2, enables the model owner to assess the model’s uncertainty (aleatoric uncertainty) during 

predictions and use this information to adjust the model weights, resulting in more accurate predictions. AIaaS 

provides AI services and functions to the users, eliminating the need for them to build and maintain their own 

AI infrastructure [HEX-20]. AIaaS providers can offer pre-built models accessible through APIs (Application 

Programming Interfaces), allowing external users to interact with deployed models. The AI agents process 

inference requests from the users, provide predictions or reports as a service. However, deployed models are 

vulnerable to attacks like model evasion and model inversion, where adversaries manipulate inputs to influence 

the decisions of the model. These risks highlight the need for continuous monitoring of inference outputs from 

AI agents and prompt retraining when required.  

 

 

Figure 2. An overview of the AIaaS framework 

Due to the inherent vulnerabilities in deep neural network (DNN) models, defending against adversarial attacks 

is a challenging task. These models can produce unexpected results because they are highly sensitive to even 

slight changes in the input data. Adversarial attacks are typically categorized into two groups based on the 

level of knowledge of the attacker. White-Box Setting is the one in which the attacker has complete access to 

the details of the model, such as its architecture, weights, and hyper-parameters. In contrast, a Black-box setting 

occurs when the attacker has no knowledge of the deployed model. Our primary focus here is on attacks in a 

Black-Box setting, although we partly address certain White-Box attacks that have a similar impact on model 

decisions as Black-Box attacks. 

Our proposed solution is a defence mechanism designed to mitigate inference queries based Black-Box attacks 

(evasion attacks) during the inference phase of the AI/ML model. The goal is to protect against scenarios where 

the probability of a misclassified class is nearly equal to the probability of the actual class, indicating high 

uncertainty in the model predictions. The impact of our method is particularly significant against adversarial 

samples that are close to the decision boundary of the model. This is typical in Black-box attack scenarios, 

where the attacker lacks access to model details and, as a result, cannot fine-tune adversarial perturbation to 

cause confidently incorrect prediction. Some White-box adversarial attacks, such as Deepfool and 
Carlini&Wagner (with default setting), also fall into this category. Our solution enables the model owner to 

assess the uncertainty estimates of the model during predictions. For cases with high uncertainty, we suggest 

adjusting the model weights in a direction to minimize quantified uncertainty (aleatoric uncertainty). This 

adjustment acts as a one-time update specific to the suspicious input. After updating, the model makes a 

prediction using the modified weights. Once the prediction for the suspicious input is completed, the model 
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owner reverts to the original model. Figure 3 illustrates the detailed implementation of our solution during a 

Black-Box Adversarial Attack and the algorithm details are provided in Algorithm 1. 

 

 

Figure 3. Detailed implementation of the proposed solution during a BlackBox Adversarial Attack           

 

Algorithm 1. The proposed algorithm to defend against inference queries based Black-Box attacks 

For the uncertainty quantification, we adopted the efficient approach originally proposed by Gal et al. [GG-

16] and later enhanced by Kwon et. al. [KWK+20]. Gal et al. demonstrated that a DNN model with inference 
time dropout is equivalent to a Bayesian approximation of a Gaussian process. Inference time dropout acts as 

an ensemble approach, where in each single ensemble model, the different neurons are dropped out in network 

layers based on the dropout ratio during prediction. The overall uncertainty in the prediction is estimated by 

calculating the variance of the probabilistic feed-forward Monte Carlo (MC) dropout sampling at prediction 

time. Subsequently, Kwon et al. introduced an alternate method to quantify both epistemic and aleatoric 

uncertainty in classification models. In their approach, the prediction variance consists of two components: 

one representing aleatoric uncertainty and the other representing epistemic uncertainty. Let 𝐻ω̂  represents the 

neural network model with parameters ω̂, and k denote the number of output classes. The model prediction for 

any test sample x, given the weights of the model, is denoted as p(y|x, 𝐻ω̂ ), where y ∈ ℝk. The formulation for 

their method is provided below: 

𝑣𝑎𝑟𝑝(𝑦|𝑥1𝐻𝜔)(𝑦) = 𝔼𝑝(𝑦|𝑥1𝐻𝜔)(𝑦⊗2) − 𝔼𝑝(𝑦|𝑥1𝐻𝜔)(𝑦)⊗2 

=
1

𝑇
∑ [𝑑𝑖𝑎𝑔{𝑝(𝑦|𝑥1𝐻�̂�𝑡

)} − 𝑝(𝑦|𝑥1𝐻�̂�𝑡
)

⊗2
]

𝑇

𝑡=1
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+
1

𝑇
∑[𝑝(𝑦|𝑥1𝐻�̂�𝑡

) − �̂�(𝑦|𝑥1𝐻�̂�𝑡
)]

⊗2
𝑇

𝑡=1

 

Where, 

  

 

Table 2 CNN model architecture 

 

Table 3 Hyperparameters 

Validation and results 

We conducted our experiments by training two distinct CNN models using MNIST (Digit) and CIFAR-10 

datasets, achieving accuracy rates of 99.44% and 82.43%, respectively. The architectures of the CNN models 

and the hyperparameters used during training are outlined in Table 2 and Table 3. Next, we applied a variety 

of attack types to each test sample in order to generate their adversarial counterparts. The selected set of attacks 

includes both Black-Box attack and White-Box attack algorithms. We then tested those adversarial samples 

back to the target models, performing these tests with and without our defence mechanism enabled. For the 

one-time model update in Step 3 of Algorithm 1, we used the Adam optimizer with a learning rate of 0.001. 

Regarding the selection of δ, we recommend evaluating the uncertainty values of the model for both correct 

and incorrect predictions on the test dataset, calculating the mean for each, and then averaging the two. 

Accordingly, for MNIST, we set δ = 0.0125 and for CIFAR10, we set δ = 0.0114. The results of our 

experiments are provided in Table 4. 
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                            MNIST dataset 

 

                              CIFAR10 dataset 

Table 4 Experimental results 

 

The results show that our proposed solution significantly enhances the robustness of AI models, which might 

be deployed in the cloud and offered as-a-service manner. Additionally, the performance of our method is 

higher in inference queries based Black-Box attacks compared to White-Box attacks. Lastly, we evaluated 

the impact of our method on the natural (clean) performance of the model. By testing the model on all the 

clean test samples from MNIST with our method enabled, we achieved an accuracy of 99.37%, which is 

nearly identical to the original performance of the model. Note that, for samples where the model is exposed 

to an adversarial sample but still makes the correct prediction through our proposed one-time model update 

operation, the model owner has the opportunity to store the adversarial sample to be used in later stages of 

adversarial training. This approach enhances the robustness of the model without requiring additional 

resources to generate these adversarial samples in advance.  

Use within ROBUST-6G System Design 

The AI model lifecycle management component in the “trustworthy and sustainable AI service layer” is 

responsible for managing a machine learning model, covering all the stages and activities that a model 

undergoes throughout its life, from data collection to model deployment, monitoring, and eventual 

decommissioning. The proposed method, which is encapsulated in Enhanced AI component of the 

“trustworthy and sustainable AI service layer”, contributes to the ROBUST-6G architecture in a way that it 

proposes additional steps in MLOps pipeline to enhance the robustness of the model. Figure  illustrates the 

proposed updates to the MLOps pipeline to enable our proposed solution and Figure 5 shows the envisaged 

placement of proposed solution in ROBUST-6G architecture.  

 

Figure 4. Proposed updates to the MLOps Pipeline to enable our proposed solution 
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Figure 5. Representation of Black-Box Adversarial Attacks Mitigation on ROBUST-6G Architecture 

3.1.2 Poisoning attacks  

FL enables distributed model training across multiple clients while preserving data privacy. However, FL is 

vulnerable to poisoning attacks, where adversaries manipulate the learning process to degrade model 

performance or introduce malicious behaviours. These attacks can be categorized into two main types: 

1. Data Poisoning Attacks – The attacker manipulates training data to influence the model’s decision 

boundary. This includes label flipping, where class labels are altered, or backdoor attacks, where subtle 

changes in input patterns cause the model to misclassify specific instances. Data poisoning typically 

requires modifying a large portion of training data to be effective. 

 

2. Model Poisoning Attacks – Instead of altering the dataset, the attacker directly manipulates the local 

model updates before sending them for aggregation. This approach can be more subtle and efficient 

as it does not require access to training data. Model poisoning can introduce backdoors, embed biases, 

or degrade performance for specific target instances while maintaining overall model accuracy to avoid 

detection. 

While data poisoning relies on corrupting the dataset, model poisoning attacks pose a greater challenge in FL 

systems, as they can be executed with minimal effort and evade standard defences. Advanced poisoning 

techniques, such as those leveraging XAI, can make these attacks even harder to detect and mitigate. 

Distributed FL poisoning attack and defence: In collaborative learning environments like 

Distributed/Decentralised FL (DFL), an adversary can extract the model from a neighbouring target client, 

inject a poisoning attack, and subsequently return the compromised model to the target. The work in [ML+24] 

employs Layer-wise Relevance Propagation (LRP) to introduce algorithmic bias, thereby amplifying group 

unfairness in FL models. LRP is an Explainable AI technique that backpropagates a model’s prediction through 
the network to assign relevance scores to input features, showing which parts contributed most to the output. 

It helps interpret complex models like deep neural networks by highlighting important input elements. 

However, the approach in [ML+24] does not address privacy attacks or decentralised FL settings, nor does it 

propose a solution to mitigate these issues. Moreover, while cryptographic techniques such as homomorphic 

encryption-based schemes [YDK+24] can safeguard the privacy of individual client updates, they are 

ineffective against poisoning attacks, as encrypted model parameters cannot be directly analyzed by the 

receiver before aggregation [ZZW+22]. The enhanced model-sharing flexibility in DFL further exacerbates 

the risk of poisoning attacks, making them more severe and likely in DFL systems. 

LRP-based Model Poisoning: We introduce ROAM - Relevance-Oriented Attack Mechanism, a novel 

poisoning attack that exploits the LRP-based XAI technique to embed a subtle and targeted backdoor directly 
into the model. The goal is to design an attack that is both highly effective and difficult to detect, increasing 

its success rate while minimizing traceability. 
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In a DFL system, an honest target peer is likely to carefully inspect a received model before aggregation, 

potentially using unknown defensive mechanisms. Therefore, the attacker must introduce minimal 

modifications to the model parameters to avoid detection. The attack is designed to be highly adaptable, 

allowing precise targeting of specific data instances while ensuring the overall model performance remains 

largely unaffected. Moreover, it requires minimal effort, as the adversary injects the poisoning backdoor 

directly into their local model. 

Attack Methodology: 

The attack manipulates the model during training by leveraging Layer-wise Relevance Propagation (LRP) to 

identify the k most critical neurons at a specific layer l for a chosen data instance xs from dataset ds. By 

selectively modifying these neurons, the attacker embeds a backdoor that subtly degrades the model’s 

performance for the targeted data instance or property. Once the compromised model is shared with a peer in 

a DFL environment, it covertly undermines the learning process while remaining inconspicuous, bypassing 

detection mechanisms and selectively sabotaging specific tasks. 

Attack Procedure: 

1. At a specific iteration n, apply LRP to identify key neurons in a target client’s model, focusing on a 

selected data instance at a chosen layer. 

2. Introduce targeted perturbations to these identified neurons, embedding the backdoor. 

This approach ensures that the attack remains subtle yet highly effective, making detection and mitigation 

significantly more challenging in decentralized learning environments. 

Figure provides an overview of the simplified attack process. Here, we send an original data and a perturbed 

data using Counterfactual Explanations and apply LRP and obtain the relevance scores of a particular selected 

NN layer for both data instances. Then, we obtain the difference in the LRP scores for the two instances and 

extract the key neurons that are important in misclassifying the input. Next, we can amplify by increasing the 

weights/gradients associated with those neurons to enhance the poisoning attack intensity. 

 

Figure 6. Unique LRP score derivation for original vs. perturbed data 

Algorithm 2 outlines the detection process, which computes unique LRP scores for a target instance 

using a machine learning model M. The algorithm begins by calculating the LRP scores for xt, 

represented as rt. It then retrieves a set of similar instances Xs belonging to the same class as xt and 

computes their corresponding LRP scores, denoted as Rs. Next, the algorithm determines the 

correlation coefficients ρi between rt and each ri in Rs . To eliminate noise and irrelevant correlations, 

it computes the z-scores zi based on the mean μρ and standard deviation σρ of the correlation values ρi. 

Finally, only significant correlations—identified using a predefined threshold zth—are retained. 
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Algorithm 2. Derive Unique LRP Scores for Target Model 

For ROAM poisoning attacks, perturbations can be directly introduced into the identified critical neurons to 

compromise the model.  

Validation and Results 
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Figure 7. Comparison of the ROAM poisoning attacks with the data poisoning 

Poisoning Impact: The impact of data poisoning was compared with our LRP-based model poisoning attacks 

to evaluate their effectiveness. In this analysis, we applied targeted data poisoning by modifying all training 

dataset labels to the target classes 9 or 7, ensuring that a poisoned client consistently produces the same output 

regardless of the input. However, when this client was aggregated within a system of five clients, the poisoning 

effect was largely mitigated by the influence of the remaining models, as illustrated in Figure (a). The results 

indicate that data poisoning exhibits a stronger impact when most of the clients are compromised. As shown 

in Figure (b), when four out of five clients were poisoned, the attack significantly influenced the model. In 

contrast, our LRP-based poisoning requires only a single poisoner to achieve a similar effect. With a noise 

threshold of +0.2 applied to the weights of 20 neurons, a single poisoned model was sufficient to degrade 

performance, as shown in Figure (c). Even when the noise threshold was reduced to +0.02, it still lowered 

accuracy across most classes, even with just one poisoned client (Figure (d)). Additionally, coordinated LRP-

based poisoning with four attackers (Figure (e)) produced results comparable to data poisoning. However, 

LRP-based poisoning is significantly more efficient, as it does not require additional data for training, making 

it a lower-cost yet highly effective alternative to conventional data poisoning techniques. 

Defence Strategy: The defence for the attack can be made by considering the existing approaches such as 

FoolsGold [FYC+18], or SHERPA [SSW+24] where either the model parameters or XAI-based model outputs 

can be analysed to detect poisoning approaches. Especially, if a large noise level added to the weights of fewer 

nodes by the LRP-based poisoning, the anomalous models can be more accurately identified by model 

parameter analysis techniques like FoolsGold, as the variation of these parameters between benign and 

poisoned client is clearly anomalous. However, a more challenging situation can be observed when the noise 

range is applied over smaller quantities for higher number of nodes, where model prediction analysis-based 

techniques like SHERPA can be used to obtain a reasonable detection accuracy, yet the techniques like Krum 

[BEG+17] or FoolsGold may not detect them properly. We observed the detection accuracy of 50% for Krum, 

24% for FoolsGold, and 64% detection accuracy for SHERPA. Thus, detection of such approaches may be 

feasible with XAI-based techniques like SHERPA. 

Use within ROBUST-6G System Design 

  

Figure 8. Integration of the poisoning attacks and defenses in ROBUST-6G architecture 

To ensure the security of AI/ML training in 6G networks, the proposed ROAM poisoning attack model and 

poisoning defence strategies will be integrated to the enhanced FL services, as shown in Figure , where both 

Centralised and Decentralised FL models can be evaluated with the poisoning adversarial attacks for 
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adversarial robustness testing and apply poisoning defence algorithms. The solutions will be provided as an 

independent and modular API interface which can be used as part of the testing process of use cases. 

3.1.3 Secure and Decentralized Federated Learning Framework using ADMM 

ADMM is a dual optimization method for convex constrained optimization based on the iterative optimization 

along directions defined by different variables, coupled with the update of the Lagrange multipliers enforcing 

constraints [BPC+11]. This method is universally known to be one of the fastest and theoretically solid convex 

optimization algorithms. However, its heuristic application to non-convex problems (e.g., non-convex 

objectives, non-convex constraints or mixed-integer programming) showed empirically that good approximate 

solutions can be retrieved fast, although with no guarantees to find the global optimum. 

Recently, the ADMM has been used to enhance federated learning [ZL+23]. The authors propose FedADMM, 

an alternative to FedAvg and its enhancements where not only the aggregation rule is changed but also the 

local step. The clients do not perform stochastic gradient descent via backpropagation but solve an ADMM 

step that amounts to a local unconstrained optimization subproblem. Still, this requires an estimation of the 

gradient performed via forward pass of one (or multiple) batch(es) of data through the model. The method 

shows comparable or better performance in terms of accuracy concerning several popular benchmarks but is 

significantly faster in many contexts. 

In the next paragraphs, we propose a different approach where not only the federated learning aggregation rule 

is tackled via ADMM but also the training of the model itself. In contrast to existing approaches, our original 

contribution is that of solving a model-based optimization problem that mimics the dynamics of a neural 

network, like previously done in [TBX+16], and at the same time inserting the model in a decentralized or 

split learning framework. 

We propose an original model-based formulation of an optimization problem that can be tackled via consensus 

optimization and, among other algorithms, the ADMM. Let 𝑖  ∈  {1, … , 𝑁 }  be the client index and 𝑙  ∈

 {1, … , 𝐿 } be the neural network layer index. We define three sets of optimization variables, namely, 𝑊𝑙
𝑖, 𝑧𝑙

𝑖 , 

and 𝑎𝑙
𝑖, the weights, pre-activations, and post-activations at layer 𝑙 and client 𝑖 , respectively. We also need the 

(layer-specific) activation function ℎ𝑙 . A multi-layer perceptron model can be defined by the following 

optimization problem that seeks to minimize the loss ℓ(𝑧𝐿 , 𝑦)dependent on the model output and the target 

labels, joint with the first two sets of constraints that define the model dynamics. 

 

The third set of constraints, namely, 𝑊𝑙
𝑖 = 𝑊𝑙

𝑗   ∀ 𝑖  ≠ 𝑗, is called the consensus constraint and ensures that the 

weights for each layer and for every couple of clients in the network are equal. Notably, the formulation also 

allows for a certain amount of personalization if this constraint is made soft (e.g., with an 𝑙2-norm penalty 

added to the objective). 

In this setting, like in classic FL, the dataset is split among the different clients. Every sample is linked with a 

different variable 𝑧 and 𝑎 , and clients do not need to share those variables. For the consensus constraint, 

instead, clients need to share a part of the information of the weights and of the Lagrange multipliers with 1-

hop neighbors. This exposes the system to possible leakage of information and model inversion attacks. We 

will discuss possible countermeasures in the last paragraph of this section. 

The ADMM updates of an approximate formulation relaxing part of these constraints can be found in closed 

form for several possibilities of the activation function, among which the commonly used ReLU is particularly 

simple if solved via an if-else logic.  

Split learning with ADMM 
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Figure 9. Split learning diagram 

The case of split learning is instead a completely different scenario from a system perspective, but it can be 

tackled in a very similar way thanks to the ADMM framework. Using the same notation of the previous FL 

setting, now our goal is to study a system where the training is carried out collaboratively and layer-wise. That 

is, nodes possess only a (block of) layer(s) of the neural network and propagate the information through clients 

in an ordered way. For simplicity, we assume that each client only owns a single layer. The dataset is kept by 

the node that trains the input layer. The setting is depicted in Figure 9. 

The associated optimization problem closely resembles the one of FL, as the model dynamics are unvaried. 

However, two details change: i) the owners of the variables, and ii) what variables form the consensus 

constraint.  

 

 

Here, single copies of the model weights and post-activations are present, hence, there is no need to keep track 

of what other clients are doing in other layers. However, node 𝑖 + 1 needs the pre-activation value of 𝑖 to 

propagate the value of the post-activation. Hence, the consensus constraint is, in this case, given by 𝑧𝑙
𝑖 = 𝑧𝑙

𝑖+1. 

Depending on what client “owns” the activation function, the consensus constraint could also be put on the 

post-activations. 

Remark 1. Notably, the two frameworks could also be combined in a setting where multiple nodes own the 

dataset and train the first (block of) layer(s) and following nodes train the rest of the neural network. 

Remark 2. It is important to notice that, in standard SGD-derived FL, the objective function that is optimized 

is the (weighted) sum of the local cost function of clients. Since neural networks are highly non-convex, it is 

not guaranteed in general that the global minimum of the weighted sum of the local function is the same as the 

original global function supposing that a single entity owns the entire dataset. This problem is known as the 

objective inconsistency of FL and is particularly evident when the data distribution is non-iid across clients. 

The formulation presented in these sections instead optimizes the global cost function, subject to model 

equality constraints, and therefore does not have any objective inconsistency. 

Use of differential privacy (DP) and homomorphic encryption 

While the specific problem of training a neural network via model-based ADMM coupled with decentralized 

and/or split learning has never been tackled before with the proposed method to the best of our knowledge, the 

study of additional privacy and security mechanisms to the decentralized optimization with the ADMM is well 

established. For instance, in [ZMW+18] the authors propose the coupling of homomorphic encryption to the 

exchanged messages between peers. Homomorphic encryption (HE) enables additions and multiplications in 

the encrypted space without needing to decrypt the message, hence making unintelligible for attackers the 

content of the message (in our context, weights, pre-(post-)activations, and Lagrange multipliers). The addition 

of HE could significantly enhance the level of privacy and security of the system. 

In the study [HGG+19] the authors focus on distributed learning via ADMM, a problem very close to ours, 

and show that the convergence of the ADMM is guaranteed even in the presence of differential privacy (DP). 
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DP consists in the addition of noise (Gaussian or Laplacian) to the updates to make them useless for attackers. 

It has been shown that, over multiple iterations, the convergence properties of the ADMM are kept even in the 

presence of DP. 

Use within ROBUST-6G System Design 

The distributed and split learning solution via ADMM described above will contribute to the development of 

the decentralized FL block as shown in Figure 10, which is useful for the trustworthy and sustainable AI service 

layer. The solution can be integrated into the ROBUST-6G architecture as a method to perform decentralized 

learning (local and aggregation rules), e.g., within UMU’s DFL emulator. Decentralized learning is especially 

useful for the applications of the WP4, which must provide full automation and decentralized control of the 

network. 

  

Figure 10. Integration of Distributed and Split Learning Solution to the ROBUST-6G Architecture 

3.2 Privacy Preserving AI Mechanisms for 6G Networks 

3.2.1 Privacy Preserving and Security Enhanced Federated Learning  

Federated learning is a collaborative machine learning approach designed with privacy in mind, where multiple 

clients work together to build a global model. Each client performs local model training on its own data and 

then sends only the updated model parameters (or gradients) to a central server. This method offers privacy 

benefits, as it allows clients to collaborate without sharing their raw data directly. However, federated learning 

is still vulnerable to sophisticated privacy attacks, which can be conducted either by the aggregator such as 
Deep Leakage from Gradient attacks [ZLH+19], or by the participants such as poisoning attacks, inference 

attacks, model inversion attacks, etc [ZZW+22]. To mitigate these privacy risks, techniques such as differential 

privacy, secure aggregation protocols such as masking, secure multi-party computation, homomorphic 

encryption, and functional encryption are employed to conceal individual local model updates from the server 

while still allowing the aggregation of results. These protocols ensure that the server only receives aggregated 

model updates and cannot access the individual updates sent by the clients. While this enhances privacy, it 

creates a challenge where the server is unable to detect certain types of security threats, such as poisoning or 

backdoor attacks, which target the model during training. Since the server cannot analyse the individual local 

updates due to privacy protection, it is unable to identify abnormal patterns or inconsistencies that may arise 

from these attacks. This limitation underscores the need for solutions that balance both privacy and security in 

federated learning. Although there are a few solutions addressing both privacy and security in the literature in 

recent years, they have some drawbacks such as requiring two non-colluding servers, heavy cryptographic 

operations, or peer-to-peer communication topology. 

One of the secure aggregation protocols that is used in FL is Homomorphic Encryption (HE), which is a type 

of encryption that enables third parties to perform arithmetic operations directly on encrypted data, or 
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ciphertexts, without needing access to the plaintext. This property makes HE particularly valuable for privacy-

preserving machine learning (PPML), especially in domains where the protection of sensitive data is a priority. 

In FL, homomorphic encryption ensures that the client model updates are encrypted before being sent to the 

server. The server could only aggregate the received encrypted model updates. Even if an attacker (or a trusted 

but curious server) intercepts the encrypted model updates, it will not be able to obtain the original data, 

because the secret keys for decryption are owned by clients. There are different types of HE. Partial 

Homomorphic Encryption (PHE) supports only specific types of operations, such as addition or multiplication, 

on encrypted data. In this context, the most basic form of PHE allows either addition or multiplication to be 

performed on encrypted values, but not both simultaneously. This limitation means that PHE can be used in 

applications where the computations involve only one type of arithmetic operation. For instance, Additive 

Homomorphic Encryption (AHE), which is a subtype of PHE, supports only addition operations on encrypted 

data. This is particularly useful in scenarios where adding encrypted data from different sources is necessary, 

but the confidentiality of the data needs to be preserved throughout the process. Fully Homomorphic 

Encryption (FHE) is another type of HE that supports a broader range of operations, allowing both addition 

and multiplication (and even more complex operations) to be performed on encrypted data. This advancement 

opens more possibilities for secure and privacy-preserving computation in fields like machine learning, where 

data privacy is a critical concern. There are different schemes for each type of HE. The reason we have different 

schemes in HE is because each scheme has a different focus and is designed to address different trade-offs 

between security, efficiency, and application requirements. As an example, in FHE, CKKS (Cheon-Kim-Kim-

Song) and BGV (Brakerski-Gentry-Vaikuntanathan) serve different needs based on the nature of the data (real-

valued vs. integer), the required precision of the result (approximate vs. exact), and the performance 

considerations. 

In HE, both public and private keys are essential for performing operations on encrypted data. The public key 

is used to encrypt the data, while the private key is needed for decryption. These keys can be generated by a 

trusted authority or using Multi-party computations to ensure their integrity and security. However, the way 

these keys are distributed and managed across the different parties, varies depending on the trust model in 

place. In an FL scenario where the goal is to protect clients from a potentially malicious server, the central 

server may attempt to recover training data from the model updates it receives. In this setup, an explicit trust 

might be assumed among the clients, where the encryption/decryption keys are shared, but the server does not 

have access to any of these keys and is therefore blinded to the model updates. However, the trust model can 

vary in different scenarios. For instance, in federated learning, involving participants might be competing 

companies unwilling to let others gain insight into their proprietary training data. In this case, the secret keys 

should remain exclusive to each participant and not be shared between them. 

In ROBUST-6G, as it is illustrated in Figure  different scenarios for distribution of nodes in FL framework 

including Vanilla-FL, hierarchical FL, and decentralised FL are taken into consideration and we are at the 

stage of developing solutions to enhance both privacy and security for these FL scenarios separately.  

 

a.Vanila-FL 

 

b. Hierarchical FL (HFL) 

 

c. Decentralized FL 

Figure 11. Different FL scenarios 

In Vanila FL, access to intermediate model updates from clients through malicious server may disclose 

sensitive information about local dataset of each client. Additionally, malicious client can disrupt the integrity 

of the training dataset or the model updates, thereby degrading the performance of the global model. 

Hierarchical FL (HFL) is an approach where the training process is structured in multiple layers, involving 

central server, regional servers, and clients. HFL introduces an additional layer of communication, which can 

provide a few advantages. HFL may improve scalability by decreasing the amount of data that global server 
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must handle at once and allowing more clients to participate in the learning process. HFL, can offer an extra 

layer of protection for privacy as the regional server can mask individual client updates before they are 

transmitted to the global server. This reduces the risk of sensitive data leakage in case of an attack. In case of 

failure at the global server, by enabling decentralized model aggregation, the regional servers can take over 

and generate the model. Thus, increases the robustness of the system and supports fault tolerance. However, 

HFL still suffers from privacy leakage by analyzing uploaded model parameters from clients or regional 

servers [SSZ+21]. Also, the malicious client or regional server can disturb the integrity of the training data or 

the model updates, leading the performance of the global model to be degraded. 

On the other hand, DFL is a network architecture that removes the need for a central server, allowing clients 

to communicate directly with each other, leading to substantial savings in communication resources 

[YWS+24]. In DFL, the typical single point of failure problem found in traditional Vanila FL is mitigated. 

Since there is no central server, there is no single node whose failure can disrupt the entire learning process. 

This increases system robustness and makes the network more resilient to failures. Also, access to all clients' 

model update parameters by one entity is restricted depending on the selected topology. Despite these 

advantages, DFL may not be immune to the threat of privacy and poisoning attacks. Malicious clients can still 

inject harmful updates into the system, which could corrupt the global model and degrade its performance. 

Additionally, it can gain information about other user’s training data from the shared model update parameters. 

While decentralization helps address some vulnerabilities inherent in centralized systems, the challenge of 

protecting the system from malicious actors remains, and the design of DFL systems must include robust 

mechanisms to detect and mitigate these types of attacks. 

Architectural Components 

It is important to understand how the modules responsible for privacy-preserving operations, including 

Privacy-preserving AI and Privacy-preserving distributed ML in the AI service layer are interacting with other 

components in the architecture to provide privacy-preserving AI service. In Figure 12, the sample flow diagram 

for privacy-preserving federated learning between Network Data Analytic Functions (NWDAFs) in the 5G 

network is presented. NWDAF serves two main purposes. First, it acts as a service consumer, collecting data 

from Network Functions (NFs), who act as service providers. Second, it processes the data and provides 

analytics and predictions as a service provider to other NFs using Analytics and Prediction Exposure 

procedures. NWDAFs, which may be geographically distributed, may be willing to use other NWDAFs 

analytics to enhance their service, without sharing their model with others. They may benefit from FL service 

to be applied among different NWDAFS; however, for this service the privacy needs to be enhanced since 

model update parameters may disclose sensitive information about training data of each NWDAF. To apply 

FL process in privacy preserving manner, as illustrated in Figure 8, in step 1, the local NWDAFs register with 

Network repository Function (NRF) and ask for FL service. They provide features related to model training, 

such as current traffic load, if they have a Graphics Processing Unit (GPU) or which types of models they can 

train. Also, they are registered with OAM and informed which privacy operations they can use. In step 2, Local 

NWDAFs subscribe to central NWDAF, which is responsible for aggregating the model updates and 

generating the global model. In step 3, central NWDAF sends client selection discovery request to NRF to 

select appropriate clients for the privacy-preserving FL process. NRF may decide on the client list with the 

help of OAM and notify the candidate list to the central server. OAM, notify local NWDAFs about decided 
privacy operations, required key and parameters. In step 4, the central server triggers local NWDAFs to start 

training. At step 5, each local NWDAF starts training its own model and the Privacy Operation Function (POF), 

which can be integrated inside or outside NWDAF, applies privacy operation on the local model update. The 
privacy-preserved local model updates are shared with the central server at step 6, who securely aggregates 

them and shares the global model with the local NWDAFs. In this flow, NRF and OAM are responsible for 

coordinating the FL process and aligning privacy operations among clients.  

 

While FL is already a well-established approach for distributed machine learning, decentralized FL might be 

an emerging extension that could become increasingly relevant in the 6G context as well. Privacy-preserving 

functionality is crucial in ensuring that local model updates are protected during this collaborative learning 

process. For the integration of privacy-preserving AI service in the ROBUST-6G architecture, multiple edge 

devices (e.g., smartphones, IoT devices) or network functions may request this service from privacy-preserving 

AI/Distributed ML according to the requirement and the use case, and the Security Orchestration in the Zero-

touch service management layer could be responsible for generating, managing and distributing the required 

keys and parameters to support privacy-preserving functionality.  
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Figure 12. Sample Flow Diagram for Privacy-Preserving Federated Learning between NWDAFs in 5G 

network 

3.2.2 Distributed Federated Learning Framework and Reputation Based Trust 

Management 

A fully DFL framework has been developed in ROBUST-6G to eliminate the reliance on a central entity and 

align with the decentralized and autonomous characteristics of next-generation 6G networks. This paradigm 

will enable decentralized AI/ML while preserving data privacy, without sharing raw data among the multiple 

nodes to train the model and exclusively sharing model updates to converge towards a final, global AI model. 

This framework enhances scalability, fault tolerance, and security by leveraging decentralized communication 

and decentralized model aggregation while ensuring seamless and trustworthy federated learning. 

Architectural Components 

The framework is designed with a modular and scalable architecture that enables fully decentralized training 

while ensuring security, reliability, and efficiency. The architecture is composed of key components that 

facilitate the management of the federated learning process, govern inter-node communication, and enable 
secure model aggregation without a central coordinating entity. These components work together to support 

privacy-preserving model training, optimize resource utilization, and mitigate risks associated with adversarial 

activity in a distributed setting as shown in Figure . 
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Figure 13. DFL Framework Overview 

Core Framework Components 

The framework consists of four fundamental components: the topology module, the deployment controller, the 

federated learning nodes, and the global model repository. Each of these components plays a crucial role in 

enabling decentralized learning while ensuring resilience against failures and adversarial threats. 

The topology module defines the communication structure between participating nodes in the federation. The 

way nodes interact directly affects the efficiency of model aggregation and the overall performance of the 

learning process. The framework supports multiple topology configurations to provide flexibility for different 

deployment scenarios. 

• Ring Topology: Each node exchanges updates with a single neighbor, forming a circular sequence. 

This structure reduces communication overhead but may slow down convergence. 

• Fully Connected Topology: Each node communicates with all other nodes in the federation. While this 

approach accelerates convergence, it increases communication costs and computational overhead. 

• Custom Topologies: Customizable network structures allow for topology designs tailored to specific 

deployment constraints and performance objectives. These include hierarchical topologies, or hybrid 

approaches where nodes interact based on trust scores or performance metrics. 

The topology module ensures that nodes can communicate effectively while maintaining privacy and 

optimizing learning efficiency. The ability to define flexible communication structures is critical for adapting 

the framework to different network conditions and application domains. 

The deployment controller is responsible for initializing the federation, orchestrating the interaction between 

nodes, and enforcing security policies. It defines key characteristics such as: 

• The number of participating nodes. 

• The communication topology. 

• The machine learning model architecture and hyperparameters. 

• The security mechanisms, including encryption protocols for model updates. 

The controller integrates a script-based automation process, ensuring a seamless deployment of federated 

learning scenarios. Through a RESTful API, external applications can interact with the deployment controller 

to modify configurations dynamically, scale the number of participants, or adjust model training parameters. 

Each federated learning node operates independently, training its model locally and participating in the 

distributed learning process. Unlike traditional FL setups where model updates are sent to a central server, 

nodes in this framework exchange updates directly with their peers based on the defined topology. Each node 

performs the following operations: 

• Model Training: Local datasets are used to update the model parameters while preserving privacy. 

• Model Evaluation: The node assesses the model’s performance using locally available validation data 

before sharing updates. 
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• Decentralized Aggregation: Instead of relying on a central server, nodes share their updates with 

designated peers, contributing to a global learning process. 

The decentralized nature of these nodes eliminates central points of failure, enhances robustness against 

attacks, and ensures that learning can continue even if some nodes drop out of the federation. 

A global model repository serves as a structured storage system for tracking model evolution throughout 

multiple training rounds. While the learning process remains decentralized, the repository provides an interface 

to: 

• Store intermediate and final model versions for auditing and analysis. 

• Enable retrieval of historical model snapshots to analyze training progression. 

• Support explainability tools that assess how different models evolve over time. 

This repository allows users to extract models at different stages, apply external evaluation techniques, and 

conduct post-training analysis to ensure fairness, robustness, and explainability. 

Communication and Training Workflow 

The communication and training workflow in this framework follows a decentralized approach, removing the 

need for a central aggregator while maintaining the efficiency of collaborative learning. The process is 

structured around a decentralized model update exchange mechanism, where nodes train models locally and 

share updates directly with their peers according to the defined topology. 

1. Each node trains a local model using its private dataset, ensuring data privacy and preventing raw data 

from being transmitted. The model undergoes multiple iterations of training based on the node’s 

computational capacity and data availability. 

2. Before exchanging model updates, each node evaluates its locally trained model against a validation 

dataset. This ensures that only meaningful updates are shared within the federation. Nodes that exhibit 

erratic learning behavior may have their updates flagged for further analysis. 

3. Instead of submitting model updates to a central server, each node communicates with designated 

peers based on the defined topology. The framework supports multiple aggregation strategies to 

ensure effective model convergence: 

a. Weighted averaging (FedAvg): Combines updates based on dataset size, ensuring that 

contributions from nodes with larger datasets have a greater influence. 

b. Adaptive aggregation: Dynamically adjusts the number of exchanged updates based on node 

trust scores, ensuring that only reliable updates are integrated. 

4. The process of training, evaluating, and aggregating continues iteratively over multiple rounds until 

the federation reaches a predefined convergence threshold. At each round, model updates are refined 

through peer-to-peer exchanges, improving overall model performance without requiring centralized 

control. 

Security and Privacy Considerations 

Security and privacy are central to the effectiveness of any federated learning system. In a decentralized setup, 

ensuring the confidentiality, integrity, and authenticity of model updates is critical to preventing adversarial 

manipulation. 

All communications between nodes are secured using AES and RSA encryption, ensuring that model updates 

remain confidential during transmission. The integration of synchronous communication mechanisms 

guarantees that updates are only exchanged between verified peers.  

The trust management system, which is based on reputation, is a critical component for safeguarding the 

integrity of the training process. This system continuously evaluates the quality and consistency of each node’s 

contributions, assigning reputation scores that reflect their reliability. Key mechanisms implemented include: 

• Continuous Contribution History and Evaluation: Each node is monitored over multiple training 

rounds, with its contributions being recorded and analyzed to determine their positive impact on the 

overall process. Consistent, well-evaluated updates lead to an increase in reputation, while anomalous 

or erratic behaviors result in penalties. 

• Reciprocal Evaluation and Dynamic Feedback: Nodes mutually share and validate their model 

updates. This reciprocal evaluation process helps detect deviations or manipulation attempts, allowing 
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the reputation scores of individual nodes to be adjusted in real time. As a result, only reliable nodes 

significantly influence the global knowledge generated during the federation. 

RESTful API and Interaction Mechanisms 

The framework incorporates a RESTful API to facilitate seamless interaction between system components, 

external applications, and monitoring tools. This API-driven design ensures modularity, extensibility, and real-

time control over the federation. 

The API follows a RESTful architecture, using standard HTTP methods (GET, POST, DELETE) for data 

retrieval, submission, and federation management. The following categories define the API’s primary 

functionalities: 

1. Federation Deployment: Enables the initialization of a decentralized learning federation with user-

defined configurations. 

2. Model Retrieval and Tracking: Allows users to extract models from different training rounds and 

nodes. 

3. Federation Monitoring: Provides real-time training metrics, node reputation tracking, and security 

insights. 

4. Attack Simulation: Supports controlled adversarial testing to evaluate model robustness. 

Endpoint #1: Deploy a Federation 

The federation deployment endpoint initializes the distributed learning environment, specifying key 

parameters such as: 

• Topology Type: Defines the communication structure (e.g., ring, fully connected, trust-based). 

• Number of Nodes: Determines the scale of the federation. 

• Model Architecture: Specifies the neural network structure and hyperparameters. 

• Security Settings: Configures encryption mechanisms and trust policies. 

Deployment is triggered by sending a POST request to the federation controller, ensuring that all nodes are 

initialized with the correct settings before training begins. This automation reduces setup complexity, 

minimizes configuration errors, and enables reproducibility in federated learning experiments. 

Endpoint #2: Extract Federated AI Models 

Model extraction is crucial for tracking training progress, analyzing intermediate updates, and performing 

external evaluations. This endpoint provides structured access to: 

• Per-node model retrieval: Allows inspection of individual node contributions. 

• Round-based retrieval: Facilitates analysis of model progression over time. 

• Final model access: Extracts the trained model after the completion of training rounds. 

Endpoint #3: Obtain Federation Metrics 

Real-time monitoring is essential for assessing training efficiency, fairness, and trustworthiness in a federated 

learning setup. The federation metrics endpoint provides: 

• Model performance statistics: Tracks accuracy, loss, and convergence rates. 

• Node-level contribution analysis: Identifies active and underperforming participants. 

• Trust and reputation insights: Displays how nodes’ reputation evolves over time. 

Use within ROBUST-6G System Design 

The DFL framework described above will contribute to the improvement and assessment of the trustworthiness 

of the AI models generated within the federation of nodes. It is positioned within the Trustworthy & 

Sustainable AI-driven Security domain, which is part of the Trustworthy & Sustainable AI Services Layer. 

The DFL framework is also located within this layer, more specifically in Enhanced FL Services, as shown in 

Figure . This framework is needed for Use Case 1, Scenario 1. 
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Figure 14. Integration of DFL Framework with ROBUST-6G Architecture 

3.3  XAI Strategies for Transparent and Robust AI in 6G  

3.3.1 XAI Approaches for Trustworthiness and Model Explainability 

XAI has rapidly become an essential area within AI, driven by the increasing demand for transparency and 

accountability in AI systems [GA+19]. By offering clear explanations of decision-making processes in AI/ML 

models, XAI encourages trust and dependability, making AI-powered solutions more interpretable and 

defensible. In the context of the ROBUST-6G framework, XAI acts as a key element, ensuring that security 

mechanisms remain explainable, adaptable, and resilient. By incorporating XAI into the AI-based ROBUST-

6G security orchestration, the project aims to create a transparent, self-evolving, and reliable security 

framework. This integration improves the intelligence, adaptability, and dependability of 6G networks, 

equipping them with strong defences against rapidly advancing cyber threats. 

Some traditional ML models, such as decision trees and linear regression, are inherently interpretable, although 

their predictive power is limited [CPC+19]. Meanwhile, contemporary ML algorithms, notably deep learning 

models, have achieved outstanding performance in diverse applications. However, their opaque nature requires 

the incorporation of XAI techniques to explain and make sense of their sophisticated decision-making 

processes. On the other hand, explanation methods can be classified as model-specific and model-agnostic. 

Model-specific techniques are applied to specific models or groups of models, allowing for an understanding 

of decisions by investigating their underlying mechanisms, such as explaining coefficient weights in neural 

networks. Model-agnostic methods, alternatively, study the relation between input and output variables 
without having structure of the model, allowing for generalization across multiple models. These approaches 

are further separated into two types: global, which describe overall model behaviour, and local, which explain 
individual predictions and help to understand the reasons determining specific decisions. The two well-known 

model-independent explanation strategies in the literature are Local Interpretable Model-Agnostic 

Explanations (LIME) [RSG+16] and Shapley Additive Explanations (SHAP) [LL+17]. LIME provides 

localized explanations by analysing model predictions with varying input data. The procedure entails 

generating a new data set consisting of perturbed samples and the corresponding predictions of a black-box 

model. Afterward, local surrogate models are trained using this new dataset to approximate the predictions 

made by the underlying black box model. This surrogate model attempts to accurately approximate the 

prediction of the AI model within a particular local context. Alternatively, SHAP is a specialized methodology 

designed to provide both local and global explanations. It is based on the concept derived from cooperative 

game theory, the SHAP framework utilizes Shapley values as a method to understand the reasoning behind 

individual predictions. The values represent the mean marginal impact of each feature, where the feature values 

of a specific data instance can be likened to coalition members. As a result, SHAP serves the purpose of 

shedding light on the importance and function of each characteristic in the prediction process, incorporating a 

systematic and analytically rigorous method of explanation. 
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In the context of the ROBUST-6G, the advancement of XAI techniques not only strengthens the definition of 

security-related AI models but also facilitates the identification and mitigation of failures and errors. By 

identifying the factors that influence AI-based security decisions, XAI supports understanding, validating, and 

improving the results of AI-based security systems. Furthermore, the multidisciplinary nature of cybersecurity 

requires a different approach to XAI that considers the unique challenges and requirements of security 

environments. Model-specific explanation techniques are mapped to the complexity of security-focused ML 

models that provide a deeper understanding of the decision-making processes involved in threat detection, and 

IDS. However, model-independent methods provide a versatile framework for analysing relationships between 

input characteristics and safety-related outcomes in different ML models, providing general perspectives on 

safety and risk vulnerability. 

Use within ROBUST-6G System Design 

Figure  demonstrates the incorporation of the XAI component within a ROBUST-6G architecture to support 

reliable and sustainable AI-driven security. The sections emphasized show where XAI components can be 

effectively implemented to enhance security operations, interpretability, and robustness. The XAI component 

is integral to the Trustworthy AI framework, supporting both Robust AI and Privacy-Preserving AI. This 

component facilitates better decision making and transparency in identifying adversarial attacks and ensuring 

resilient security defences. XAI also assists in Threat Detection & Mitigation, enhancing the precision of 

identifying adversarial attacks. It may contribute to adaptive incident response plans by offering interpretable 

insights into potential threats, refine alarm notification systems by decreasing false positives, and improve 

detection reliability. Additionally, XAI might help analyse and explain Denial of Service (DoS) and Anomaly 

Detection alerts. Enhances Authentication Mechanisms by ensuring secure access through the identification of 

potential adversarial authentication attempts. In general, the figure underscores the role of XAI in improving 

security, providing interpretability, and improving decision-making across different network security layers. 

 

Figure 15. Incorporation of the XAI component within a ROBUST-6G architecture 

3.3.2 Robust Continual Learning with Conformal Prediction 

The issue of AI’s trustworthiness has never been more crucial. As AI systems are deployed in sensitive and 

high-stakes scenarios, ensuring their reliability and preventing unintended harm is paramount. However, if an 

AI system experiences catastrophic forgetting—losing the ability to recall previous tasks while learning new 

ones—it may behave unpredictably, increasing the risk of critical errors or even harm. Therefore, tackling 

catastrophic forgetting is not merely a matter of improving AI performance; it is a fundamental step toward 

strengthening trustworthiness and ethical dimensions of AI.  

Catastrophic forgetting remains a major challenge in trustworthy AI, especially in dynamic environments 

where machine learning models must adapt without losing previously learned knowledge. Traditional AI 

systems, designed for static learning, struggle in real-world applications such as healthcare, autonomous 

systems, and wireless communications, where models must continually learn new tasks. Existing continual 
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learning (CL) techniques mitigate forgetting to some extent, but they often fail to quantify predictive 

uncertainty, leading to overconfident and unreliable decisions. 

To address this, we introduce the Conformal Prediction Confidence Factor (CPCF), a metric that integrates 

conformal prediction (CP) into continual learning. Unlike conventional accuracy-based evaluations, CPCF 

quantifies how confident a model remains in previously learned tasks, allowing for a dynamic and interpretable 

assessment of catastrophic forgetting without requiring ground truth labels. This makes it well-suited for 

privacy-sensitive and real-time AI applications, where storing past data is impractical. 

Our framework is based on Adaptive Conformal Prediction [AB+23], which evaluates confidence degradation 

as new tasks are introduced. The methodology consists of three phases: data splitting, calibration, and 

prediction. 

1. Data Splitting: The dataset is divided into training data and calibration data, determined by a 

predefined calibration ratio. A higher calibration ratio improves conformal score reliability but reduces 

available training data. 

2. Calibration Phase: We compute conformal scores by ranking softmax probabilities and identifying the 

minimum probability mass required to include the correct label. These scores are used to calculate the 

quantile threshold q_alpha which determines the confidence level for forming prediction sets. 

3. Prediction Phase: At inference, prediction sets are formed for each test sample by including classes 

whose cumulative probability meets or exceeds q_alpha . The size of these sets quantifies 

confidence—shorter sets indicate high certainty, while longer sets suggest increased uncertainty and 

potential forgetting. 

 

Figure 16. Framework for evaluating catastrophic forgetting in continual learning using conformal 

prediction. The process includes training on the MNIST dataset, computing conformal scores from 

calibration data, forming prediction sets, and evaluating forgetting. 

The CPCF metric is computed by averaging the lengths of prediction sets for previous tasks after training on 

a new task. A low CPCF means strong knowledge retention, while an increasing CPCF signals forgetting and 

reduced confidence. This process is illustrated in Figure 16, which outlines how conformal prediction is applied 

in a continual learning setting. 

Experimental Setup and Validation Results 

To validate our approach, we use the MNIST dataset in an incremental class learning setting. A Multi-Layer 

Perceptron (MLP) with three fully connected layers is trained in two stages: base training on digits 0-4, 

followed by incremental learning where digits 5-9 are introduced sequentially. A low learning rate (2×10⁻⁵) is 

chosen to prevent catastrophic forgetting by ensuring gradual adaptation while maintaining previously 

acquired knowledge.  
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Figure 17. Illustration of Catastrophic Forgetting: Comparison of accuracy metrics for previously learned 

tasks (a_prev) and newly learned tasks (a_new) across incremental tasks 

To assess catastrophic forgetting, we compare CPCF with the accuracy of previously learned tasks a_prev. 

Figure 17 illustrates how accuracy on prior tasks drops as new tasks are introduced, confirming catastrophic 

forgetting. Our results show a strong correlation between increasing CPCF values and declining accuracy, 

reinforcing CPCF as a reliable measure of forgetting.  

Calibration Ratio Spearman Corr. 

(%) 

Spearman p-value Pearson Corr. 

(%) 

Pearson p-value 

0.05 -51.40 1.3461 × 10−4 -51.63 1.2416 × 10−4 

0.10 -51.75 3.5179 × 10−8 -53.16 1.2638 × 10−8 

0.15 -51.18 1.4544 × 10−4 -52.65 8.5758 × 10−8 

0.20 -50.68 1.7270 × 10−4 -51.58 1.2635 × 10−4 

Table 5 Correlation between CPCF and a_prev for fixed significance level alpha (α = 0.1) and varying 

calibration ratios 

We further analyse CPCF’s robustness by varying the calibration ratio and significance level α. As seen in 

Table 5 Correlation between CPCF and a_prev for fixed significance level alpha (α = 0.1) and varying 

calibration ratios, CPCF remains stable across different calibration ratios, indicating its reliability regardless 

of how training data is proportioned. However, adjustments to α influence CPCF’s sensitivity to model 

uncertainty. A higher α lowers the quantile threshold, leading to larger prediction sets and increased granularity 

in detecting uncertainty. This adaptability makes CPCF effective across diverse learning scenarios. 

The ability to detect and mitigate catastrophic forgetting is essential for trustworthy AI. As AI becomes more 

integrated into critical applications like healthcare, autonomous systems, and wireless networks, ensuring that 

models retain knowledge while adapting to new tasks is key to reliability and transparency. The CPCF metric, 

rooted in conformal prediction, offers a dynamic and interpretable approach to measuring model confidence, 

providing an alternative to traditional accuracy-based evaluations. By eliminating the need for stored ground 

truth labels, CPCF is well-suited for real-time continual learning in privacy-sensitive environments. 
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Our results demonstrate that CPCF effectively captures catastrophic forgetting, aligning with accuracy-based 

assessments while providing deeper insights into model uncertainty. Future work could extend CPCF beyond 

classification tasks to regression problems, memory replay techniques, and multimodal datasets, further 

enhancing its utility in real-world AI applications. 

3.3.3 XAI-IDS: Explainable AI-Based Intrusion Detection System 

With the rapid evolution of cyber threats, modern network systems face unprecedented risks that challenge 

their resilience and security infrastructure. While ML-based Intrusion Detection Systems (IDS) have 

significantly improved threat detection, they often prioritize predictive accuracy at the expense of 

interpretability. In recent years, XAI techniques have gained traction across various domains for providing 

insights into model behavior. However, their application in IDS research remains largely limited to post-hoc 

explanations, focusing solely on interpreting the outputs of pre-existing models.  

The integration of XAI methods, such as SHAP and LIME, presents opportunities for improved model 

transparency and trustworthiness; however, these methods must overcome challenges related to computational 

complexity, stability, and potential vulnerabilities to adversarial manipulation. 

Although significant research has been dedicated to integrating XAI with IDS, most studies have primarily 

emphasized interpretability, transparency, and fostering user trust. Several existing frameworks predominantly 

apply XAI techniques to offer post-hoc explanations for black-box model predictions rather than embedding 

explainability directly within the IDS development process [AGR+24]. 

Furthermore, feature reduction approaches leveraging XAI methods have been proposed to enhance IDS 

efficiency. However, these methodologies typically achieve only marginal improvements in detection 

accuracy. [BBA+23] investigated explainability methods to identify significant features for LSTM-based 

models detecting DDoS attacks within CIC datasets, achieving only minor performance enhancements despite 

reduced feature sets. Similarly, [KKP+23] utilized a combination of SHAP, PFI, ICE, and PDP explanations 

(collectively SPIP) with their LSTM-based IDS. Although feature reductions were achieved through these 

techniques, subsequent model retraining with reduced feature subsets yielded minimal improvements, 

highlighting the persistent challenge of achieving meaningful performance gains and underscoring the 

necessity for automated analytical frameworks rather than manual feature analysis. 

Despite notable progress, significant challenges persist within the XAI-integrated IDS domain. One recurring 

issue is balancing interpretability against predictive accuracy, as models that are inherently interpretable often 

compromise detection effectiveness. Moreover, scalability and generalizability remain limited across diverse 

network environments and varied attack scenarios. For instance, [ZRL+22] restricted their XAI integration 

exclusively to DNS over HTTPS (DoH) attack detection, reflecting the prevalent limitation of domain-specific 

solutions. Thus, a clear requirement exists for an innovative approach that inherently integrates explainability 

throughout the IDS modelling lifecycle, simultaneously maintaining robust predictive performance. 

To address these gaps, this section proposes a novel methodology utilizing XAI techniques specifically for 

feature selection, moving beyond conventional retrospective explainability approaches. This novel approach 

ensures substantial and genuine enhancements in detection rates, demonstrable through comprehensive 

comparative evaluations before and after feature selection. The proposed method uniquely combines effective 
interpretability with significant model performance improvements, offering a practical balance between 

explainability and accuracy. Furthermore, its applicability across multiple domains, including emerging fields 

such as 5G and 6G networks, and various datasets with distinct features and attack types, highlights its 

versatility and broad relevance in the evolving threat landscape. 

Framework Components 
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Figure 18. Proposed XAI-based Feature Refinement Pipeline in Intrusion Detection Framework 

The proposed framework, as shown in Figure , focuses on securing the training and execution of AI/ML models 

specifically designed for intrusion detection within 6G network environments. Our methodology involves an 
explainable and robust Intrusion Detection System (XAI-IDS) that utilizes Explainable AI techniques not 

merely for post-hoc interpretation but integrally within the model training and evaluation phases. Initially, the 

NSL-KDD dataset is utilized due to its comprehensive structure and wide acceptance for IDS benchmarking. 

This dataset includes three subsets: KDDTrain+ for training, KDDTest+ for standard evaluation, and 

KDDTest-21 for advanced assessment. It categorizes network traffic into five classes—Normal, Probe, Denial 

of Service (DoS), User to Root (U2R), and Remote to Local (R2L)—capturing diverse attack patterns. Each 

instance comprises 41 features, subsequently expanded to 122 features following preprocessing via one-hot 

encoding of categorical attributes (protocol_type, flag, and service). 

The core ML component employs a XGBoost classifier. The multiclass XGBoost classifier is chosen due to 

its robustness in managing heterogeneous and imbalanced datasets, as well as its proven performance in 

multiclass scenarios. XGBoost builds an ensemble of decision trees sequentially, where each tree corrects 

errors from the previous iteration, iteratively refining the model. This ensemble-based gradient boosting 

approach offers strong predictive accuracy and computational efficiency. Moreover, XGBoost's probabilistic 

output (multi:softprob) enables the generation of confidence scores for each prediction,  

To ensure transparency and improve model performance through feature optimization,SHAP are integrated as 

the primary XAI method. SHAP values, derived from cooperative game theory, quantify the contribution of 

each feature to the prediction by calculating average marginal contributions across all possible feature subsets. 

This theoretical robustness distinguishes SHAP from other explainability methods, enabling precise 

measurement of feature impact. Moreover, SHAP efficiently identifies influential features, providing insights 

at both local (individual prediction explanations) and global (overall model behavior explanations) levels. By 

incorporating SHAP directly into the IDS modelling pipeline, this approach ensures transparency and 

interpretability, thus enhancing model reliability and facilitating the identification and removal of redundant 

or non-influential features, ultimately improving detection performance and computational efficiency. 

SHAP-Based Feature Refinement 

Our implementation involves several methodical steps. Initially, SHAP values are computed individually for 

each prediction across all classes using the TreeExplainer algorithm, which is particularly suited for tree-based 

models. This computation is confined strictly to the training set to prevent data leakage, ensuring a valid and 

unbiased evaluation of feature significance. 

Subsequently, the absolute mean of the aggregated SHAP values is computed across all classes for each 

instance in the training dataset, yielding a comprehensive matrix of size (125957, 122). The use of absolute 

mean values ensures focus solely on the magnitude of feature contributions, irrespective of their directional 

impact, thereby accurately capturing overall feature significance.  

In the next analytical step, mean SHAP values for each feature across all training instances are calculated, 

reducing the dataset dimensionality further into a compact vector of size (122,). This concise representation 

allows clear identification and ranking of global feature importance, facilitating strategic selection. Finally, 

only features exhibiting positive mean SHAP values—those actively contributing to the predictive capacity—
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are retained. This selective process substantially reduces the feature space from 122 to 68 influential features. 

Figure 19 illustrates the top-ranked features in the training set, clearly indicating that the feature 'src bytes' 

dominates others, demonstrating its significant contribution to the overall predictive capability of the model. 

 

Figure 19. Top 20 features ranked by mean absolute SHAP value in the NSL-KDD training dataset. Each bar 

represents a feature’s average contribution to the model’s output 

Upon identifying the contributing features, we employ an advanced feature selection method, SHAPRefine, to 

further reduce this set to 30 features. SHAPRefine adopts a selection strategy that incrementally adds features 

from the ranked list shown in Figure 19, evaluating model performance at each step. Figure  provides a 

comparative analysis of three XGBoost models trained on different feature subsets, showing that selecting the 

top-ranked features based solely on initial SHAP values does not always yield the best performance. This 

discrepancy primarily arises due to hidden interdependencies and interactions among network data features, 

which are not immediately evident through individual feature importance rankings alone. Our advanced feature 

selection explicitly addresses these hidden dependencies, significantly enhancing detection accuracy and 

robustness. The resulting refined feature set demonstrates notable performance improvements, validated 

through rigorous comparative analyses conducted before and after feature reduction, thereby making the 

framework highly adaptable across multiple domains and diverse datasets relevant to emerging 5G and 6G 

network security scenarios. 
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Figure 20. Comparison of three XGBoost models trained on different feature subsets. The left panel presents 

overall model accuracy, macro F1, and weighted F1, whereas the right panel displays F1 scores for 

individual attack classes.  

This section presents a robust, explainable, and efficient intrusion detection methodology specifically tailored 

to address emerging cybersecurity challenges in 6G networks. By integrating SHAP-based explainability into 

the feature selection and model training pipeline, our proposed XAI-IDS framework not only enhances 

detection accuracy and computational efficiency but also significantly improves transparency and 

interpretability. Within the ROBUST-6G project's functional architecture, this methodology directly supports 

secure AI/ML deployment by offering adaptable, transparent intrusion detection capabilities. Furthermore, its 

versatility ensures seamless integration with complementary solutions developed within other work packages, 

such as fairness-enhancing algorithms and secure data acquisition frameworks, ultimately contributing to a 

comprehensive, resilient, and trustworthy 6G security ecosystem. 

Use within ROBUST-6G System Design 

 

The integration of XAI within 6G networks (as shown in Figure 21) is essential for ensuring transparency, 

interpretability, and trustworthiness in AI-driven decision-making processes. Conventional AI models often 

operate as black boxes, making it difficult for users to interpret their reasoning, which poses significant risks 

in high-stakes applications such as cybersecurity, autonomous systems, and network anomaly detection. This 

is further exacerbated by the widespread adoption of large and not-so-large language models [S+25]. Ensuring 

that AI models operate reliably under evolving network conditions necessitates the adoption of confidence-

aware evaluation methodologies. Recent advances in XAI emphasize the importance of trust calibration, where 

models not only provide accurate predictions but also communicate their level of certainty and confidence. 

This aligns with the broader goal of trustworthy AI, which integrates fairness, robustness, and explainability 

into AI-driven processes. We have developed an effective method for assessing XAI in 6G is the use of latent 

space representations to quantify model confidence. By leveraging Variational Autoencoders (VAEs), a model 

can learn meaningful latent embeddings that capture the underlying structure of network data, enabling an 

assessment of how well new observations fit within known distributions. The Mahalanobis distance, computed 

in this latent space between the training data and the inference data, provides a quantitative measure of how 

anomalous a given input is relative to previously seen data, making it a valuable tool for assessing uncertainty 

in AI-driven anomaly detection systems. In our work [PAK+24] on trustworthy IDS, this approach was applied 

to the NSL-KDD dataset, demonstrating a 45% correlation between Mahalanobis distance in latent space and 

the reconstruction error. This correlation highlights the effectiveness of latent space confidence estimation in 

distinguishing normal from malicious network activities. By optimizing key parameters, such as the latent 

space dimension (optimal at 20) and KL weight (optimal at 0.25), we were able to fine-tune the model’s ability 

to generate reliable uncertainty estimates, enhancing the robustness of AI-driven security mechanisms in 6G. 
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Figure 21. Integration of Explainable AI with ROBUST-6G Architecture 

Another critical metric for evaluating XAI integration in 6G is the CPCF which provides a dynamic and 

theoretically grounded measure of model reliability. Unlike conventional confidence scores derived, for 

example, from softmax outputs, CPCF uses conformal prediction to construct adaptive prediction sets that 

quantify uncertainty at a specified confidence level without requiring access to ground truth labels. In our 

experiments on continual learning, CPCF was validated as an effective indicator of catastrophic forgetting, 

with a strong correlation (51% to 57%) between CPCF values and the accuracy of previously learned tasks. 

The robustness of CPCF was further confirmed across different calibration ratios and significance levels, 

showing its adaptability in diverse learning scenarios. This is especially relevant in 6G applications, where AI 

models must operate under non-stationary environments, dynamically changing wireless conditions, and 

adversarial network attacks, making CPCF a valuable tool for maintaining trust and reliability in real-time AI-

driven systems. 

3.3.4 XAI-Based Detection and Mitigation of Adversarial Attacks 

ML models are highly effective for identifying and countering threats but may also introduce novel risks. So, 

ensuring the confidentiality, integrity, and availability of AI models and their associated data is crucial. Threats 

may appear in various forms, such as adversarial attacks, data tampering, and unauthorized access to data 

[CAD+18]. As ML technology evolves, so do adversarial techniques, and traditional defences like adversarial 

training are computationally intensive and often inadequate for real-time threat detection. These approaches 

generally require a compromise between resilience and model efficiency, posing challenges for applications 

that need immediate actions. On the other hand, XAI can be seen as a novel method for identifying and 

mitigating adversarial attacks [APA+21]. Most of the research that employs XAI to investigate adversarial 

attacks has focused on image classification [KMG+20], [FBS+20]. However, addressing the cybersecurity 

risks introduced by adversarial AI techniques continues to pose a major challenge. Currently, security protocols 

are increasingly dependent on AI / ML frameworks to detect and mitigate emerging sophisticated threats. For 

example, IDSs are essential for analysing network activities and recognizing suspicious behaviour that might 

signal potential attacks. Progress in ML has improved the performance of IDSs, enabling a more effective 

detection of anomalies. This effectiveness is especially significant given the sheer amount of data managed in 

5G and future mobile network environments. Nonetheless, attackers consistently attempt to degrade the 

performance of ML-based IDSs, thereby increasing the susceptibility of the network. 

Robust Intrusion Detection System with Explainable Artificial Intelligence 

The vulnerability discussed above is analysed in detail in this article [GFE+25] that presents a notable 

contribution towards the development of a comprehensive framework dedicated to the detection and mitigation 

of adversarial threats in IDS. The paper introduces an agnostic approach that employs XAI techniques to assess 

how adversarial samples affect ML model interpretations. Furthermore, a zero-touch detection method has 
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been designed to enhance IDS capabilities, focusing on strengthening defences against network-centric attacks 

and advanced techniques used by adversaries to bypass detection mechanisms. By proactively addressing these 

security vulnerabilities, IDS security and resilience are improved. The proposed method allows IDS not only 

to identify new attack vectors, but also to react to potential threats, even with a limited number of features. The 

test environment used is the O-RAN infrastructure, chosen for its emphasis on utilizing AI/ML to optimize 

network functionality and capabilities [NRD+22]. O-RAN adopts 3rd Generation Partnership Project (3GPP) 

standards to improve interfaces and protocols, tackling the increased attack surface due to virtualization, open 

interfaces, and multivendor configurations. However, despite these improvements, the architecture still falls 

short in addressing specific vulnerabilities related to ML/AI within O-RAN components, such as the Non-

Real-Time RAN Intelligent Controller (Non-RT RIC) and the Real-Time RAN Intelligent Controller (Near-

RT RIC) [IL+15]. 

The main contributions in [GFE+25] are listed as below: 

• By integrating an XAI feature into the ML-based detection framework, a novel method is developed 

for real-time evaluation. 

• The detection model improves the understanding of the significance of features, improves the selection 

of crucial attributes to identify adversarial attacks, and reduces false positives. 

• The concept behind the XAI feature involves understanding the behaviour of unseen data, ensuring 

that its distribution aligns with the standard behaviour observed during training, emphasizing the 

importance of assessing SHAP value distributions within the training data, a novel proposal. 

• The proposed ML-based detection method with XAI integration enhances the performance of the 

detection system, ensuring better adaptation to changing attack patterns. 

• In addition to providing detection and mitigation solutions, this approach offers a zero-touch strategy 

aimed at augmenting IDS functionalities, thus strengthening defences against adversarial threats. 

The literature has explored numerous methods to protect IDSs from adversarial threats. For example, 

adversarial training, as introduced in [AKN+19], aims to enhance the identification of adversarial examples. 

A deep learning-based methodology, specifically designed for adversary detection, has been suggested in 

[NKG+21]. However, current solutions face several problems. Primarily, integrating multiple techniques 

during training and applying them within the ML model of IDS exposes pre-trained models to potential 

analysis by attackers. This exposure allows adversaries to adjust their strategies to exploit model 

vulnerabilities. In addition, many solutions ignore the specific attributes of attack vectors, resulting in the 

exclusion of essential features. The significance of the explainability for IDS is underscored in the survey 

[NAA+22]. Although earlier studies have advanced the explainability of IDS, a comprehensive framework 

combining the resilience of ML against adversarial threats, real-time functionality, and IDS robustness without 

human input has been lacking. Another previous study [GF+24] demonstrated that XAI is particularly effective 

in detecting adversaries by evaluating the explanations of pre-processed network traffic data along with the 

decisions made by ML-based IDSs. However, this method requires a large number of features to analyse 

adversarial inputs, suggesting the need for a stronger strategy for broader applications. Addressing these gaps 

with an integrated approach could significantly improve IDS efficiency and reliability. To address these 

challenges, this paper introduces a robust IDS capable of identifying and countering adversarial attacks by 

incorporating an XAI component. The proposed detection model operates in real time, even with a limited 

feature set, under both white-box and black-box conditions. Further elaboration is provided in the following 
sections. 

An adversarial detection strategy is proposed that aims to enhance the robustness of IDS by integrating the 

XAI feature for real-time evaluation. This approach is designed to be model-agnostic and applicable to any 

IDS framework or context. The primary objective is to improve IDS by enhancing its defences against 

adversaries using network and adversarial techniques to evade detection. The core assumption of the 

framework involves the use of XAI to reveal and emphasize system vulnerabilities, allowing the effective 

identification of altered network traffic for the action of IDS. Figure  illustrates the general structure of the 

proposed IDS methodology. By incorporating the XAI feature into the ML model of IDS, the system can assess 

its vulnerability to adversarial approaches. This assessment is based on the definition of the normal data 

behaviour pattern through the distribution of SHAP importance values. 
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Figure 22. General structure of the problem and proposed XAI-based adversarial                             

A novel XAI-based adversarial detection framework is intended to identify if new data has been altered. The 

learning procedure is split into training and run-time stages. 

In the training phase, SHAP feature importance values are collected for each input to characterize the normal 

behaviour of the data by analysing the distribution of these importance values. 

• Let  X = {𝑥1, 𝑥2, … , 𝑥𝑛}  be the training data set and let  f(X) be the ML model trained on  X .  

• The SHAP importance values for each input 𝑥𝑖 are denoted by 𝑆(𝑥𝑖) = {𝑆1(𝑥𝑖), 𝑆2(𝑥𝑖), … , 𝑆𝑚(𝑥𝑖)} 

where 𝑚 is the total number of features. 

• Assume the distribution of SHAP values for each feature 𝑖 follows a normal distribution: 𝑆𝑗(𝑥) ∼
𝑁(𝜇𝑗, 𝜎𝑗

2) where μj and 𝜎𝑗
2 represent the mean and variance computed from the training data. 

During run-time, the ML model evaluates unseen data by checking whether the SHAP feature importance 

values align with the normal behaviour distribution observed in the training data. 

• Let 𝑋′ = {𝑥1
′, 𝑥2

′, … , 𝑥𝑘
′}  be the test data. The SHAP values for a test sample 𝑥𝑖  are given by:      

𝑆(𝑥𝑖
′) = {𝑆1(𝑥𝑖

′), 𝑆2(𝑥𝑖
′), … , 𝑆𝑚(𝑥𝑖

′)} 

• The behaviour of the test data is assessed by verifying if each 𝑆𝑗(𝑥𝑖
′) falls within the expected normal 

range: 𝜇𝑗 − 𝜆𝜎𝑗 ≤ 𝑆𝑗(𝑥𝑖
′) ≤ 𝜇𝑗 + 𝜆𝜎𝑗 

• Where 𝜆 is a threshold parameter (e.g., 𝜆 = 2 for a 95% confidence interval under the assumption of 

normality). 

If the SHAP values of the unseen data maintain the same distribution as the training data, 𝑥𝑖
′ is classified as 

Normal, otherwise the input 𝑥𝑖
′  is identified as an Attack. 

Validation and Results 

This section demonstrates the capability of our approach to detect and mitigate adversarial input that 

significantly degrades IDS performance, specifically designed for RRC signalling storm attacks in real time. 

XAI is used to identify and prevent the degradation of IDS performance. The proposed framework aims to 

identify potential adversarial attacks by detecting significant deviations in the distribution of SHAP importance 

values for each input in real time and to implement a simple yet effective zero-touch mitigation strategy. 

There are three different experimental setups in the paper [GFE+25]. 
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1) Initially, IDS performance is evaluated in two contexts: one with an RRC signalling storm attack intended 

to disrupt network traffic, and another where this attack is combined with an adversarial attack on the IDS. 

Various methods are used to assess the effectiveness of adversarial attacks. First, an RRC signalling storm 

attack is simulated, marked by excessive signalling that overloads the control plane. Then, the ability of 

IDS to detect is evaluated. The IDS performance is also measured in normal conditions without adversarial 

attacks using an auto-encoder as a baseline. 

 

Figure 23. The accuracy of IDS under different adversarial attack method 

In Figure , the accuracy of the IDS is illustrated under various adversarial attacks. The X-axis reflects the 

epsilon value, with larger values indicating stronger perturbations. The Y-axis displays the IDS's ability to 

classify inputs as normal or malicious. Without attacks, IDS maintains high baseline accuracy. As the 

epsilon rises, the accuracy declines, indicating the decreased efficacy of IDS against stronger perturbations. 

FGSM significantly reduces accuracy, highlighting the need for robust defences against gradient-based 

attacks. Although IDS shows improved performance over other attacks, suggesting some resilience, PGD 

remains partly effective, underscoring the model's partial robustness. The model demonstrates slightly 

improved accuracy compared to PGD, implying it manages iterative attacks like BIM more proficiently. 

However, the significant drop in accuracy when faced with Gaussian noise highlights its vulnerability, 

underscoring the importance of effective noise handling and pre-processing strategies. 

2) In the second scenario, we propose an adversarial attack detection strategy that incorporates an XAI feature 

to assess whether the new data supplied to the IDS aligns with the normal behaviour distribution of the 

training data. During training, SHAP values are calculated for each input to determine their importance. 

Kernel density estimation is utilized to smoothly estimate the distribution from these importance values, 

which then defines the normal behaviour pattern for IDS data. During run-time, an autoencoder analyses 

the unseen data. To determine if a test input is an anomaly, a threshold is computed as a Z-Score from the 

established normal behaviour (derived from the training data) and verify whether the distance of unseen 

input exceeds this threshold.                         

 AE-BIM attack Permutation LIME SHAP 

True Negative (TN) 144 132 127 130 

False Positive (FP) 0 12 17 14 

False Negative (FN) 45 24 15 0 

True Positive (TP) 0 21 30 45 

Table 6 Confusion matrix metrics of different detections cenarios 

The proposed approach is evaluated by comparing it with individual feature importance methods like 

LIME and permutation importance. Table 6 illustrates four confusion matrices for different detection 

scenarios under BIM attack using various methods. The AE-BIM attack matrix displays a high true 
negative rate but has difficulty detecting true positives, indicating challenges in spotting adversarial 

examples. The permutation matrix shows improved results with both true negatives and some true 

positives, suggesting a better detection of adversarial perturbations. LIME offers a balanced detection with 

moderate true positives and negatives, even though with some accuracy trade-offs. SHAP significantly 
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enhances detection, achieving many true positives and fewer false negatives and positives, thus improving 

the ability to distinguish actual from adversarial input. 

3) Lastly, a straightforward and efficient mitigation strategy examines the predicted attack instances. When 

unseen data fit to the same distribution as the training data (i.e. normal), it is labelled "Normal." If an input 

deviates from the standard distribution range and is identified as an outlier, it is classified as manipulated, 

and its label is adjusted accordingly. 

 

Figure 24. Method comparison with XAI-based mitigation 

Figure  shows the mitigation performance of the proposed method. The permutation importance approach 

improves accuracy, indicating the adverse effects of attacks. Although LIME aids in prediction explanation, 

its effectiveness is like that of the permutation method, highlighting its limitations against attacks. SHAP 

demonstrates the highest accuracy, showcasing its superior ability to handle adversarial instances and enhance 

model robustness.  

In conclusion, the integration of the XAI feature into adversarial detection enhances accurate and efficient 

identification of adversarial actions. This approach has proven effective by enhancing IDS performance in an 

O-RAN setting, marking significant progress in cybersecurity improvement. The system introduces zero-touch 

functionality, enabling IDS to respond quickly to emerging threats and considerably mitigate risks to the 

network infrastructure. With the evolution of O-RAN, the collaboration of XAI and IDS will be critical in 

addressing new vulnerabilities. Future research and development are crucial for the advancement of XAI-

enabled cybersecurity measures to maintain robust network defence against evolving cyber threats.  

3.4 Fairness in AI for 6G Systems 

The rise of AI-driven intelligence in 6G systems introduces not only opportunities for optimized service 

delivery, adaptive network management, and context-aware decision-making, but also significant ethical and 

societal challenges. One of the key pillars underpinning Trustworthy AI —as recognised by the European 

Commission’s High-Level Expert Group on AI and mirrored in projects such as HEXA-X, as well as by 

ROBUST-6G project is fairness. In the context of 6G, fairness refers to the equitable treatment of users, 

services, and applications by AI-enabled functions operating across the radio, core, and edge layers of the 

network. As highlighted in the HEXA-X project deliverable D6.1 ("Trustworthiness and Explainability for 

AI"), fairness is defined as: "The absence of bias, discrimination, and unfair treatment of individuals or 

groups in AI-based decision-making, including during the design, training, deployment, and inference 

phases of AI systems." 

Fairness in 6G systems must consider both technical and societal dimensions. On the technical side, AI models 

embedded in 6G service orchestration or network control may inadvertently encode and amplify biases present 

in training data or operational context. On the societal side, 6G’s role in ubiquitous connectivity and critical 

services (e.g., healthcare, emergency response, industrial automation) magnifies the impact of unfair decisions, 

potentially exacerbating digital divides or marginalising vulnerable users. Importantly, fairness is not an 

isolated attribute—it is interlinked with privacy, robustness, and explainability. For instance, achieving 

fairness may require balancing trade-offs between model performance and privacy guarantees, particularly in 

federated or privacy-preserving machine learning systems. This interconnectedness is acknowledged in our 

project’s goal of building a risk-averse yet agile resource control framework that delivers security guarantees 

under fairness/privacy constraints. 

Furthermore, fairness in 6G must be interpreted in the multi-stakeholder and dynamic ecosystem of future 

networks. Unlike static systems, 6G environments evolve based on mobility, demand, and context, making 

real-time fairness a moving target.This creates new challenges for AI fairness auditing, adaptive mitigation 

mechanisms, and context-sensitive fairness definitions. 
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To address these challenges, some EU-funded projects such as HEXA-X, AI4Trust, and REWIRE were 

exploring methodologies for fair-by-design AI, focusing on bias detection, fairness constraints in model 

training, and feedback-driven fairness adaptation. These efforts serve as inspiration and foundation for our 

project’s initial explorations into fairness in 6G systems. 

 

In the following sections, we outline: 

• how fairness can be framed within AI-driven 6G service provisioning 

• how it interacts with privacy-preserving mechanisms such as differential privacy 

• how future evaluation frameworks might incorporate fairness as a measurable and actionable criterion. 

3.4.1 Fairness Considerations in Privacy-Preserving AI for 6G 

As AI-driven intelligence becomes foundational to 6G networks, ensuring user privacy has emerged as a 

critical design objective, particularly in contexts involving sensitive or personally identifiable data. Techniques 

such as Differential Privacy (DP) are increasingly adopted to provide formal guarantees that individual data 

cannot be inferred from AI model outputs.  The random noise injected by DP to protect individual data often 

degrades model utility disproportionately for underrepresented or vulnerable groups, exacerbating existing 

biases [WC+25]. In essence, stringent privacy guarantees can widen accuracy gaps between majority and 

minority groups. For example, studies have shown that as the privacy budget (ε) is tightened (more noise), the 

performance disparity between well-represented and underrepresented demographics initially grows [YD+24]. 

This occurs because noise obfuscates the already limited information from smaller groups, causing greater 

relative error for those groups. If the noise becomes extremely high, the model’s outputs degenerate to mostly 

random (uniformly poor for all groups), trivially achieving “fairness” at the cost of usefulness. Such findings 

underscore a fundamental trade-off: privacy safeguards can conflict with fairness, demanding careful 

calibration of DP mechanisms to balance individual privacy and equitable model performance. 

One fairness-aware approach is to adjust the DP noise magnitude per group so that no subgroup is unduly 

penalized by privacy noise. Rather than apply a one-size-fits-all noise level, the perturbation can be calibrated 

to the characteristics of each group (e.g., their size or risk of bias). For instance, researchers have proposed 

stratified DP mechanisms that run separate DP operations for each demographic group and then aggregate the 

results [GA+24]. By tailoring noise addition within each subgroup, this technique can yield more balanced 

outcomes across groups without increasing the total privacy budget. Essentially, each individual still has the 

same DP guarantee, but the noise is injected in a context-aware manner. 

Beyond static noise shaping, fairness-aware DP algorithms embed fairness goals into the model training 

procedure. These in-processing approaches jointly optimize for privacy and fairness, often by imposing 

fairness constraints or re-weighting during learning while noise is added. For example, one can formulate a 

constrained optimization where the model must satisfy a group fairness metric (such as equality of odds or 

limited disparity in error rates) subject to DP noise being added at each step. Recent work by Ding et al. 

[DZL+20] calibrates the DP noise in a logistic classifier by a fairness-aware objective, effectively dynamically 

adjusting the noise or clipping for each class feature to meet a fairness criterion. Another strategy called FairDP 

casts private model training as a bilevel optimization that automatically modulates the influence of each 

training instance based on its class and difficulty [TF+23]. In FairDP, the algorithm increases or decreases the 

contribution of data from certain classes (within DP-SGD’s clipping and noise framework) to counteract bias, 
using a theoretical bias-variance analysis to guide these adjustments. This yields a self-adaptive DP mechanism 

that, for example, might allocate a slightly larger effective privacy budget (lower noise) to a class that saw 

high error, thus improving that class’s accuracy while still respecting an overall privacy limit. The key idea 

across these methods is to intertwine fairness constraints with the DP mechanism so that the model’s privacy-

preserving perturbations are not blind to fairness concerns. By doing so, the algorithm actively preserves model 

fairness (e.g., similar error rates across groups) during training rather than treating fairness as an afterthought. 

In the context of AI-driven 6G networks, fairness-aware DP becomes an enabling technology for inclusive and 

privacy-preserving intelligence. 6G networks will intertwine with diverse user data (from IoT sensors to 

personal devices) and use AI for everything from network optimization to personalized services. Ensuring 

privacy is non-negotiable in these scenarios–techniques like DP will be employed to protect sensitive 

information flowing through learning algorithms at the network’s edge. However, if those privacy techniques 

unfairly degrade the service for certain users (e.g., users in minority demographic groups or sparsely connected 

regions whose data contributions are smaller), the network’s goal of universal service quality would falter. 
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3.4.2 Fairness Aspects in Trustworthy AI for 6G 

As 6G envisions a hyper-connected world powered by pervasive intelligence, the integration of AI into the 

network’s fabric introduces complex fairness challenges. In such a dynamic and decentralized environment, 

AI models will make critical decisions in tasks related to security and privacy, in addition to conventional 

tasks, such as spectrum sharing, edge resource allocation and scheduling, and network slicing. These decisions 

must be not only efficient and accurate but also equitable across diverse user profiles, geographical regions, 

and usage scenarios. Without explicit fairness mechanisms, AI systems risk amplifying existing disparities, 

especially when trained on data that reflect historical biases or uneven representation – leading to 

disproportionate QoS for underrepresented users or devices. Thus, fairness is not just a desirable property, but 

a prerequisite for trustworthy AI in 6G. 

In secure 6G systems, AI plays a central role in ensuring real-time threat detection, adaptive access control, 

and privacy-preserving communication. However, integrating AI into security-critical functions introduces 

new fairness challenges. As AI models automate decisions such as intrusion detection, user authentication, and 

anomaly classification, it is essential to ensure that these systems do not discriminate against specific users, 
devices, or regions based on biased training data or flawed assumptions. For example, an AI-based intrusion 

detection system that flags behaviour based on historical usage patterns may unjustly penalize users from 

underrepresented or non-conventional usage scenarios—raising serious ethical and trustworthiness concerns. 

In this context, fairness becomes a critical dimension of secure AI, where trust is eroded not only by false 

positives or security breaches but also by inequitable treatment. Ensuring fairness in secure 6G AI systems 

involves auditing detection rates across different demographic or device groups, verifying that access control 

policies are enforced uniformly, and minimizing disparities in model confidence and false alarm rates. 

Moreover, fairness-aware AI design should be coupled with privacy-preserving machine learning techniques, 

such as federated learning or differential privacy, to protect user data while maintaining equitable treatment. 

One promising direction to address fairness in AI predictions for 6G is through fair conformal prediction—a 

framework that provides valid confidence intervals or prediction sets for AI outputs with guaranteed coverage 

probabilities. Traditional conformal prediction methods ensure that the true label lies within the predicted set 

with a certain probability (e.g., 90%), but this guarantee typically holds in aggregate across the entire 

population. In heterogeneous 6G environments, this can lead to coverage disparities between different 

subgroups—such as rural vs. urban users or low-power vs. high-capability devices. To mitigate this, group-

conditional conformal prediction or fair adaptive calibration can be used to ensure that the desired coverage 

levels hold across all relevant subpopulations. For instance, the system could enforce that confidence intervals 

for IDS maintain equal reliability regardless of user location or device type. 

Another promising solution is related to an auditing perspective in fair and trustworthy AI. Ensuring fairness 

in AI-driven 6G systems requires not only designing equitable algorithms but also establishing mechanisms to 

audit and certify their behaviour post-deployment. From a trustworthy AI standpoint, AI auditing serves as an 

essential tool to systematically assess whether the decisions made by AI models comply with predefined 

fairness criteria. One powerful and statistically rigorous way to frame such audits is through hypothesis testing. 

In this paradigm, fairness auditing can be modelled as a series of statistical tests where the null hypothesis 

typically represents the claim that the AI system behaves fairly across specified groups (e.g., equal error rates 

or predictive coverage), while the alternative hypothesis reflects a violation of fairness. For example, in a delay 

prediction model deployed across urban and rural regions in a 6G network, an auditor might test: 

• H₀: The average prediction error is equal for both user groups. 

• H₁: There is a statistically significant difference in prediction error between the groups. 

 

Such hypothesis-driven auditing enables quantifiable, interpretable, and reproducible evaluations of fairness 

across subpopulations. It also helps in setting confidence levels (e.g., 95%) for the conclusions, allowing 

stakeholders to make decisions grounded in statistical significance rather than heuristic thresholds. 

Importantly, this framework can be extended to multivariate fairness audits, testing for interactions between 

user attributes (e.g., device type, location, network load) and model performance metrics. 

For AI systems in 6G, which often operate under non-stationary and partially observable environments, 

dynamic or online hypothesis testing methods are particularly relevant. These include techniques like 

sequential testing, adaptive p-value correction for multiple comparisons, and change detection to identify 
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fairness degradation over time. Moreover, coupling these tests with conformal prediction auditing can assess 

whether prediction sets maintain coverage parity across user groups – a key fairness concern when deploying 

AI in mission-critical 6G applications like autonomous transport or remote healthcare. 

Finally, fairness constraints could be embedded into multi-objective optimization frameworks in the AI 

pipeline, balancing performance, confidence interval width, and fairness across groups. These solutions would 

allow 6G networks to make trustworthy, uncertainty-aware decisions while ensuring equitable service for all 

users—advancing both technical robustness and social responsibility in next-generation communication 

systems. Such aspects are studied in Task 4.4 in WP4, connecting trustworthy AI solutions designed in WP3 

with risk-aware resource allocation developed in WP4. 

4 Sustainable AI for Ensuring Energy-Efficiency in 6G 

4.1  An ADMM-based optimizer for SNNs 

Spiking neural networks 

Spiking neural networks (SNNs) are a type of neural networks (NNs) mimicking more closely how the human 

brain works and are effective in processing time series. Interestingly, when running on dedicated hardware, 

SNNs show three orders of magnitude improvement in the energy-delay-product (EDP) [RBG+22] and are 

thus promising for reducing the inference energy at the network edge.  

Computational neuroscience is the field that studies the modelling of neurons and how groups of neurons 

interact [GKN+14]. The neuronal dynamics are, in general, described by differential equations and require 

some state variables to be stored and updated according to the model during time. Among the simplest but 

computationally efficient models, the most used to build complex SNNs is the leaky integrate and fire (LIF) 

neuron [GKN+14], which will be presented in the next paragraphs concerning the problem formulation. 

Currently, the scientific literature is focusing on searching for efficient training methods for SNNs. The 

commonly used stochastic gradient descent (SGD) cannot be directly applied to train SNNs due to a non-

differentiability of the activation function (a step function). However, starting from this idea, the surrogate 

gradient method [NMZ+19] has been proposed, which consists in approximating the backpropagation step 

with a hyperbolic tangent. Nonetheless, this introduces an approximation error and the vanishing gradient 

problem, making the method ineffective for deeper networks. 

In the next paragraphs, we introduce an alternative training method based on the ADMM [BPC+11]. 

Use of the ADMM to train NNs 

The use of the ADMM to train NNs is rooted in the seminal paper of Taylor et al. [TBX+16], where the purpose 

of the authors was developing an ADMM optimizer to avoid the expensive execution of SGD on GPUs, 

exploiting instead a parallel execution on multiple CPUs. While the results were interesting and promising, the 

method did not gain popularity due to the increased availability of efficient and relatively cheap GPUs that 

made SGD and its variants the golden standard. However, more recently the method has been re-investigated 

and improved with the addition of a computationally efficient subroutine for the pseudo-inverse estimation 

and Anderson acceleration [ZBD+25]. In 2023, Bemporad investigated the use of ADMM to train recurrent 

neural networks (RNNs) [BEM+23], a problem more similar to the training of SNNs due to the dynamic nature 

of equations. In the very recent work presenting BADM [WZL+24], the authors adopt a mixed approach of 

ADMM and SGD where they train an NN with backpropagation but split the batches of sample through 

ADMM. The method outperforms the best SGD-derived approaches like ADAM and RMSprop. 

Besides the fact that the recent advances in the use of the ADMM are promising also concerning the 

performance of the trained model, a dual method is especially interesting when applied to SNNs due to the 

non-differentiability of the activation function, which makes the direct application of backpropagation 

infeasible. In the next paragraphs, we will explain the framework developed and tailored for SNNs and present 

some preliminary results obtained from training a simple model with a batch of data in stochastic and 

deterministic fashions, respectively. 

Problem formulation and SNN model 

To tackle the training of SNNs via ADMM we need to first design a model-driven optimization problem that 

defines i) the objective function, namely, the loss function, ii) the dynamics of the LIF neurons and the relative 
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state variables, and iii) how the LIF neurons interact, i.e., the dynamics of the neural network. This is done via 

the following formulation, where the variables 𝑊𝑙 , 𝑧𝑙,𝑡 , and 𝑎𝑙,𝑡  represent the weights at layer 𝑙 and the 

membrane potentials and output currents (spike) at layer 𝑙 and time 𝑡 for each neuron, respectively. The 

activation function of SNNs is modelled as a Heaviside step function centered in 𝜗 and denoted ℎ𝜗, which is 

non-convex and, especially, non-differentiable. The hyperparameter 𝜗  represents the membrane potential 

firing threshold: When the membrane potential reaches or surpasses this threshold, the neuron emits a spike, 

and the potential is reset to a rest value (the threshold is subtracted). The full optimization problem 

encompassing points i), ii), and iii) is formulated according to Figure 21 a graphical representation of the SNN 

model is also depicted, linking the variables to their meaning. 

 

Figure 25. Graphical representation of a spiking neural network as a dynamic system (left). Problem 

formulation with variables having the same color of the dynamic system (right) 

ADMM solution and algorithm 

The problem presented in the previous paragraph is non-convex due to the multiplication between weights and 

neuron outputs. The use of an alternating direction method splits it into subproblems where the two variables 

are alternatively optimized, and this practically reaches stability. However, the presence of a second non-

convexity is caused by the Heaviside step function.  

For these reasons, the problem is tackled in a relaxed version via an augmented Lagrangian that adds 

multipliers only for the output of the SNN, which is used in the loss function. The form of the augmented 

Lagrangian is 

. 

This formulation is equivalent to relaxing the non-convex constraints via 𝑙2-norm penalties. At this point, the 

partial derivatives with respect to each variable must be taken to obtain the primal updates, to which the dual 

update of the Lagrange multiplier must be added. These updates, according to the ADMM algorithm, must be 

iteratively performed until reaching convergence. The full updates are given in the following Algorithm 3, 
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which also uses the subroutine in Algorithm 4 for z update. This update requires a special projection due to 

the presence of the Heaviside function. 

 

Algorithm 3. ADMM Optimizer for SNNs 

 

Algorithm 4. Subroutine to find the z variable minimizer depending on the value of the Heaviside step 

function 

Validation and Results 

Preliminary results are presented in this section, obtained with a two hidden layers SNN composed of 32 and 

64 LIF neurons, respectively. The test was conducted on a batch of data (300 samples) of the neuromorphic-

MNIST (N-MNIST) dataset, where each sample has 200 time steps.  

Two methods are compared: in the orange line, the version of the ADMM as given in Algorithm 3 is shown, 

whereas the blue line with the shaded region presents a stochastic version where the order of the updates is 

randomized along layer and time dimensions. The average of 10 runs is plotted together with the maximum 

and minimum results, represented by the shaded region. As can be seen from Figure , the stochastic version 

outperforms the deterministic version in terms of accuracy, as it happens for SGD vs regular GD. This is due 

to the non-convexity of the problem: Stochasticity helps to avoid poor local minima. It is worth mentioning 

that, despite the loss being slightly better for the deterministic version, the model dynamics are not respected 

as shown in Figure , hence producing poor accuracy in the inference phase. In Figure , the convergence 

characteristics of the two methods are shown. While both methods show the convergence of the residuals at 

the last layer (deterministic ADMM is even faster), the Lagrangian cost diverges for the orange curve after 

epoch 400. This proves the inability of the deterministic version to stabilize the dynamics of the SNN in the 

hidden layers, resulting in poorer performance. 
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Figure 26. Loss (left) and accuracy (right) obtained by optimizing a two hidden layers SNN based on a batch 

of data. Comparison between a deterministic and stochastic version of the ADMM 

 

Figure 27. Convergence of the proposed method. Dual residuals of the constraints (left) and value of the 

associated relaxed Lagrangian (right) 

Extension to decentralized and split learning 

The problem formulation and algorithm presented in this section are tailored for a centralized training of SNNs 

where the full dataset and full neural architecture are kept within a common storage system to which the 

processors have access. However, the framework can be extended to two decentralized scenarios of interest 

according to the method presented in Section 3.1.4. Specifically, we can perform 

• Decentralized peer-to-peer training. With the addition of constraints imposing the equality of 

weights learned on multiple nodes and the relative Lagrange multipliers, the decentralized training of 

the global model can be reached. In this setting, like in federated learning, each node holds a private 

dataset not to be shared with others and communicate only a part of the Lagrange multipliers to the 

neighbors. The convergence speed in this case depends on the communication topology. 

• Split training. The split training setting is the case where each node holds a part of the neural 

architecture (e.g., a layer) and the global model is trained collaboratively. In this case duplicate 

variables must be created containing the useful information of the previous/following layer/block of 

neural network and each node must share Lagrange multipliers with the node holding the 

previous/following layer/block. The dataset should be kept by the node processing the input layer. 

Use within ROBUST-6G System Design 

The ADMM-based optimizer for the SNNs algorithm described above will contribute to the development of 

the spiking neural network simulator, which is useful for the trustworthy and sustainable AI services layer. 
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The algorithm is important because it allows energy-efficient inference with scalable models at the edge. 

Because of its possible extensions as decentralized learning, it can be integrated into a decentralized FL 

component but also used as a standalone component to perform efficient computing. 

SNNs have shown particularly promising performance for time-series processing and have been applied with 

success at the physical layer. If dedicated hardware is used, processing can be made faster and more energy 

efficient, however SNNs can be also coded in field programmable gate arrays (FPGAs), a commonly used 

device in telecommunication networks. Hence, possible applications are foreseen in the WP5. 

  

Figure 28. Integration of ADMM-based optimizer for SNN algorithm to the ROBUST-6G Architecture 

4.2 Semantics-Aware User-Oriented Task Scheduling in Federated Learning 

Federated Learning (FL) is significantly challenged by energy consumption, particularly during client-side 

computations, which constitute the largest portion of energy usage across all FL stages, including server-side 

computation, downlink communication, client-side computation, and uplink communication [YGS+23, 

TGF+25]. The energy efficiency of FL is primarily determined by the frequency of model aggregations, 

highlighting the critical need to balance FL performance and energy consumption. 

This study explores the potential benefits of semantic-aware participation strategies for FL clients with limited 

battery resources. Particularly, the work presents investigation into the optimization of client participation 

strategies within EHFL. Through analysis of the interplay between battery capacity, computational cost, and 

charging probabilities, the potential of battery-aware and training-oriented client selection approaches to 

enhance energy efficiency and performance stability needs to be demonstrated. To address the client selection 

problem, a battery-aware client participation approach is proposed. This approach enables clients to engage in 

global model aggregation based on their battery levels, thereby minimizing redundant local training and 
transmission, and ultimately achieving satisfactory performance with significantly reduced energy 

consumption compared to standard FL.  
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Figure 29. A Schematic View of EHFL based on Probabilistic Decision Rules 

Energy-Harvesting FL (EHFL) with Probabilistic Decision Rules 

In the context of IoT deployments, where sensor nodes often operate with limited energy resources, the 

following EHFL model can be considered. Particularly, it is applicable to scenarios in which an IoT node must 

decide among transmitting data, training a local model, or remaining idle based on its current battery level and 

probabilistic rules. 

Initially, this study examines EHFL where transmission, local model training, and battery charging are 

governed by predefined probabilities. At each time slot, a user decides its next action, subject to the following 

constraints: users can charge one battery unit per slot but cannot simultaneously train a local model and 

transmit a message. A probability distribution determines the selection of one of three tasks: transmission (Tx), 

local model training (Lr), or remaining idle. Battery charging (Bc) events follow a separate probability 

distribution.  

Battery levels are a fundamental constraint: users with zero battery level cannot perform any task. Actions 

resulting in negative battery levels are rejected. Transmission and battery charging each require one time slot 

(lasting a few milliseconds), whereas local model training requires k time slots, consuming k times the energy 

of a single transmission. 

Once a user has a local update, its next action is transmission, provided it has sufficient battery. After every 𝑆  
slots (one epoch), the server aggregates all available updates in its buffer. Before initiating a new epoch, the 

server broadcasts the global model to all clients, consistent with standard FL systems. 

 

Algorithm 5. Vanilla Federated Averaging 
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Algorithm 6. Energy Harvesting FedAvg with probabilistic decision rules 

Training-Oriented Client Strategy for EHFL 

Achieving satisfactory performance necessitates a certain number of transmissions and local model training 

sessions. The convergence rate of Federated Averaging (FedAvg) on non-IID data is proven to be one 𝑂 (
1

𝐵𝑇
) 

[LHY+20], where 𝑇  represents the number of uplink communications and 𝐵  is the number of training batches 

per client. User-centric participation strategies are essential for enabling clients to make independent 

participation decisions. 

During the battery charging process, users must decide how to allocate their energy to enhance the stability of 

collaborative learning and improve KPIs. A client may prioritize a specific task (e.g., training or transmission) 

based on the "outdatedness" of its reference model, aligning with the concept of the version Age of Information 

(vAoI) [HPY+24]. 

The probabilistic decision rules are compared with a training-oriented client strategy for EHFL. The 

convergence rate of FL is inversely proportional to the total number of local training events. The objective is 

to maximize the number of local model training occurrences while ensuring battery charging follows a 

Bernoulli distribution. This strategy prioritizes local training whenever possible. Each client 𝑖  trains its local 

model as soon as its battery level 𝐸𝑖 reaches the minimum requirement for local training, denoted by 𝜅 . If an 

update has not been sent, the client performs uplink transmission as soon as 𝐸𝑖 > 0. 
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Figure 30. (Left) Boxplot of energy consumption per user for different battery charging probabilities (0.01 to 

0.5). (Right) Average test accuracy for different battery charging probabilities 

As the probability of battery charging events (𝑝𝑏𝑐) increases, users consume more energy due to frequent 

recharging, enabling more local model training. Conversely, a scarcity of battery charging leads to two key 

issues: first, slower convergence due to postponed transmission or training; and second, significant 

performance fluctuations affecting both average and individual test accuracy trends. 

When applying training-oriented strategies, the overall trend remains consistent. However, these strategies 

enable clients to reach the saturation point faster than probabilistic decision rules. Despite this, prioritizing 

local training does not mitigate performance fluctuations. Given the experiment's IID user assumption, all users 

exhibit similar trends despite variations in battery levels and learning progress. Thus, performance oscillations 

are not solely attributed to uneven battery supply; rather, client participation must also account for unstable 

communication and computation patterns arising from intermittent energy harvesting. 

Cyclic Client Participation in EHFL 

Cyclic client participation can achieve faster asymptotic convergence rates compared to vanilla FedAvg 

[MMR+17] with uniform client participation, under suitable conditions [CSJ+23]. Selecting clients based on 

participation frequency can accelerate convergence at a rate of 𝑂 (
1

𝑉𝑇
), where 𝑉  is a constant determined by 

data heterogeneity and partial client participation. 

Beyond faster convergence, cyclic participation offers additional advantages. By grouping clients and enabling 

consecutive participation, the first group immediately transmits local updates, while subsequent groups have 

additional time for local training preparation. Grouping clients based on their training likelihood (in descending 

order) facilitates more efficient energy utilization and stabilizes performance trends. 

The primary objective of cyclic client participation in EHFL is to minimize performance fluctuations by 

controlling the average number of participants per communication round, while simultaneously reducing 

energy consumption by avoiding redundant client-side computations. Initial results indicate that prioritizing 

local training can accelerate convergence, although complete mitigation of performance fluctuations arising 

from intermittent energy harvesting is not achieved. Furthermore, the concept of cyclic client participation has 

been explored as a promising method to control participant numbers and stabilize performance, thereby 

reducing energy consumption and minimizing redundant computations. The simulations with cyclic 

participation in EHFL will be finalized, with a thorough evaluation of its impact on convergence rates and 

energy efficiency. Additionally, the exploration of advanced client grouping and scheduling algorithms for 

cyclic participation, aiming to further optimize energy utilization, is intended. Furthermore, the integration of 

semantic-aware participation strategies based on version Age of Information (vAoI), to guide client decisions 

by assessing model “outdatedness,” will be pursued as a challenging yet potentially high-impact contribution. 

Extensive simulations and real-world experiments are intended to validate the proposed strategies and quantify 

their impact on various performance metrics, including convergence speed, energy consumption, and model 

accuracy. 



 

 
 Deliverable D3.2 

 

Dissemination level: Public Page 57 / 74 
 

Use within ROBUST-6G System Design 

The Semantics-aware user-oriented task scheduling in Federated Learning will contribute to ROBUST-6G 

MS3.1 by suggesting optimized client scheduling policies that minimize redundant computation and 

transmission. Additionally, the proposed strategies will also contribute to MS3.5 as the inference models are 

obtained in a distributed manner in which the energy harvesting system, represented as battery level status, 

formulates a semi-Markov model. The framework takes an important role since it enables the clients to 

achieve energy efficiency by reducing the carbon footprint of distributed intelligent networks. 

 

 

Figure 31. Integration of Semantics-aware User-Oriented Task Scheduling to ROBUST-6G Architecture 

5 Integrating XAI Measures into the Robust 6G Architecture 

An essential aspect of ROBUST-6G is its integration of XAI, which is fundamental in achieving transparency, 

reliability, and real-time adaptability for security management. By incorporating XAI into the ROBUST-6G 

framework, security mechanisms become explainable, resilient, and automated, minimizing human 

involvement while enhancing network protection. For example, with XAI-driven monitoring and analysis, the 

Programmable Monitoring Platform (PMP) consistently collects security performance data and relays them to 

the AI Service Management Layer to optimize models. Security insights provided by XAI are also 

communicated to the Zero-Touch Security Management (ZSM) Layer and the Exposure Layer, supporting 

ongoing adaptation and enhancement of security protocols. For this reason, Figure  is drawn to illustrate a 

preliminary design for embedding the XAI module within the ROBUST-6G framework. A central component 

of this integration is to showcase providing explainability feature of trustworthy AI with real-time monitoring 

and adaptability, achieved through the PMP, which continuously collects security performance data and 

provides feedback to the AI Service Management Layer for fulfilling given request. In addition, security 

insights are communicated to the Zero-Touch Security Management Layer and the Exposure Layer, allowing 

continuous improvements and enhancements. This design supports the ROBUST-6G vision by integrating 

explainable, resilient, and automated security mechanisms, reducing the need for human intervention while 

improving network protection against adversarial threats. 

The procedure begins at the Exposure Layer, where a user sends a security service request, represented as a 

Robust IDS in the Figure 32. This request is then sent to the Zero-Touch Security Management Layer. Here, 

the Security Service Orchestration handles it and forwards it to the Security Resource Orchestration module, 

tasked with the dynamic allocation of security-related tasks, such as data gathering from the Infrastructure 

Layer. The S-CL (Security Control Layer) Management then organizes security mechanisms and initiates an 

AI service request, which is directed to the Trustworthy & Sustainable AI Services Layer. In the AI Service 

Management Layer, the AI Model Lifecycle Management addresses the request and triggers the XAI module. 

This module enhances security by providing explainability evaluation, compliance, transparency, robustness, 

and detection. Given that the main function is adversarial detection using XAI, the system initially activates 

the Robustness component, which then engages with the Robust AI module to identify adversarial attacks. 
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After the model is finalized, it is returned to S-CL Management before being sent to Domain Analytics within 

the Cloud Layer for deployment. The Infrastructure Layer integrates fundamental components for 6G 

networking and computing, comprising the 6G RAN, 6G Core, and features for the Physical Layer Security 

Module. Furthermore, the Virtualization Layer contains SDN Controllers that facilitate adaptable network 

configurations, while Domain Analytics utilizes both data and AI models to produce security insights. The 

data collected and optimized models are then applied through Domain Analytics and transmitted back via the 

Programmable Monitoring Platform, ensuring smooth, real-time security adjustments within the ROBUST-6G 

architecture. 

5.1 Illustrating XAI Integration through a Security Service Request in 

ROBUST-6G    

To demonstrate how XAI is embedded into the ROBUST-6G architecture, we provide a detailed walkthrough 

of a representative use case: a Robust IDS request initiated by a user. This example highlights how XAI 

facilitates transparency, real-time feedback, and automated adaptability across the various architectural 

layers—ranging from user-facing exposure interfaces to AI model lifecycle management and infrastructure 

interaction. 

The Figure  accompanying this section depicts a high-level architectural flow where an IDS service request 

triggers coordinated processes across the Exposure Framework, ZSM Layer, Trustworthy & Sustainable AI 

Services Layer, Infrastructure Layer, and the PMP. This flow demonstrates how explainable, trustworthy, and 

adaptive AI services are orchestrated to meet specific security demands in a 6G environment. 

The integration of the XAI module ensures that decisions and actions taken by the AI models are interpretable, 

compliant, and robust—particularly in response to adversarial threats. Furthermore, the system supports 

continuous learning and improvement via KPI and QoS feedback loops, reinforcing the system’s long-term 

resilience and self-optimization capabilities. 

Below is a step-by-step breakdown of the process: 

 
A user initiates a security service request—for example, requesting a Robust IDS—through 

the Exposure Framework. 

 
The request is forwarded to the ZSM, where it is handled by the Security Orchestration module. 

 
The Security Orchestration coordinates with both Resource Management and Security CL 

Management to begin provisioning and service preparation. 

 
Resource Management requests necessary resources and data from the Infrastructure Layer, 

which includes components like 6G RAN/Core and the virtualized network. 

 
The Infrastructure Layer collects relevant operational data and feedback, forwarding it to 

the Domain Analytics module for initial analysis of the requested service. 

 
The Security CL Management uses orchestration logic to formalize the request into an AI 

Service Call and forwards it to the AI Service Management Layer. 

 
The AI Service Management Layer triggers the AI Model Lifecycle Management process, 

initiating preparation of the model and needed services. 

 
The XAI Module is activated to evaluate the model’s explainability, compliance, robustness, 

transparency, and adversarial detection capabilities. 

 
If adversarial robustness is required, the Robustness component engages with the Robust 

AI module to enhance the model’s defensive capabilities. 

 
Once the necessary parameters and requirements are collected for the requested AI service, the 

finalized model is sent back to Security CL Management for navigation toward deployment. 

 
The Domain Analytics module (which can be placed flexibly in the architecture—here assumed 

to be in the cloud) deploys the model, analyzes its performance, and generates actionable insights. 

 
KPI and QoS metrics are collected via the Programmable Monitoring Platform (PMP) and 

relayed back into the architecture. 
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These monitoring insights are fed into the AI Model Lifecycle Management for continuous 

model tuning and optimization. 

 
Security insights are shared with the ZSM Layer to allow adaptive updates of security 

configurations and policy orchestration. 

 
The final security service—enhanced with explainable AI—is exposed to the user as Security-as-

a-Service, completing the end-to-end automated loop. 

5.2 Other Security Service Requests Suitable for XAI-enabled integration: 

Beyond the example of the Robust IDS, many other security services can be requested via the Exposure 

Framework and fulfilled through the same layered orchestration enabled by ROBUST-6G. These requests 

typically require coordination across AI, management, infrastructure, and monitoring components, making 

them ideal for full-stack flows with explainable, adaptive AI at the core. 

 

Below is a list of potential security service requests that would follow a similar architectural flow: 

1. Request for Zero-Trust Network Access (ZTNA) enforcement across edge devices. 

2. Request for Anomaly Detection for Encrypted Traffic using XAI-driven inference. 

3. Request for Real-Time Threat Intelligence Integration with dynamic policy updates. 

4. Request for Federated Learning Model Deployment for distributed threat detection. 

5. Request for Explainability Assessment of an already deployed AI firewall. 

6. Request for AI-Based DDoS Detection and Mitigation tailored for ultra-low latency. 

7. Request for Adversarial Attack Simulation to evaluate model robustness. 

8. Request for Automated Security Patch Orchestration across the 6G Core and RAN. 

9. Request for Malware Detection as a Service for containerized edge workloads. 

10. Request for Compliance Audit and Traceability Reporting using XAI tools. 

11. Request for Secure Bootstrapping of IoT Devices using lightweight trust models. 

12. Request for Dynamic Risk Score Calculation for industrial or vehicular endpoints. 

13. Request for Trustworthy Decision Logs of past AI security actions. 

14. Request for Security Policy Simulation and Validation across network slices. 

15. Request for Data Provenance Tracking and Verification for sensitive data flows. 

16. Request for Context-Aware Security Enforcement in immersive XR environments. 

17. Request for Energy-Aware Security Analytics in resource-constrained edge nodes. 

18. Request for SLA Violation Detection for latency- and security-critical services. 

19. Request for Secure Collaboration Frameworks for multi-domain service chains. 

While the above list presents a diverse set of security service requests that can be triggered via the ROBUST-

6G architecture, it is important to note that not all requests will follow the exact same sequence or require 

interaction with every architectural layer. In particular, data gathering (Step 4) from the Infrastructure Layer 

may not be necessary in all scenarios. For example, requests involving historical audit log retrieval, policy 

verification, or compliance checks might rely entirely on metadata and stored information available within the 

ZSM Layer or other control components, without needing fresh telemetry from the network. Similarly, the 

deployment location (e.g., far edge, near edge, central cloud) or the execution point of analytics may vary 

based on latency constraints, data locality, or use case sensitivity. However, for use cases that actively leverage 

XAI-particularly those involving dynamic detection, adaptation, or model retraining—the architectural flow 

tends to remain consistent, with ZSM coordination, AI lifecycle management, monitoring integration, and 

explainability evaluation being recurring elements across these flows. 

To illustrate a lighter and more forensic use case within the ROBUST-6G architecture, the following flow 

outlines the steps involved in fulfilling a historical audit log retrieval request. Unlike real-time security 

services such as intrusion detection, this type of request does not require data collection from the 

Infrastructure Layer or model retraining. Instead, it leverages stored logs, decision metadata, and 

explainability modules to provide transparent insights into past security actions. The steps below demonstrate 

how this type of service is orchestrated efficiently through the Zero-Touch Security Management and AI 

Services layers: 



 

 
 Deliverable D3.2 

 

Dissemination level: Public Page 60 / 74 
 

 
A user initiates a security service request through the Exposure Framework, requesting access 

to historical audit logs for a specific network segment, timeframe, or AI decision. 

 
The request is received by the ZSM Layer, specifically by the Security Orchestration module. 

 
The Security Orchestration parses the request type, identifies it as a log retrieval task (not 

requiring real-time infrastructure data), and forwards it to the Security CL Management. 

 
Since this request does not require fresh telemetry, Resource Management is not involved, and 

no data is pulled from the Infrastructure Layer. 

 
The Security CL Management queries the internal Security Logs Repository, which contains 

audit trails of previously executed actions, decisions, and system responses. 

 
If the request includes explainability, the AI Service Management Layer is notified to retrieve 

metadata on the relevant AI decisions. 

 
The AI Model Lifecycle Management module accesses archived model versions, inference 

contexts, and decision logs from prior deployments. 

 
The XAI Module is triggered in a passive/explanatory mode, providing insights into how the 

decisions were made (e.g., why an alert was generated or blocked). 

 
The Transparency and Compliance components of XAI are used to generate a user-friendly 

explanation of the historical decisions. 

 
No model training, robustness analysis, or detection is performed, as the purpose is purely forensic 

and explanatory. 

 
The resulting audit package is passed back to the Security CL Management, which formats the 

output per policy. 

 
The Domain Analytics module may be used to correlate events or summarize patterns if the 

request involves trend analysis or aggregated statistics. 

 
If KPIs or trends are requested, the Programmable Monitoring Platform (PMP) accesses 

historical KPI/QoS datasets, without engaging live feedback loops. 

 
The complete audit response is compiled and sent back through the ZSM Layer to be validated 

and securely exposed. 

 
The final report—containing logs, AI explanations, and any analytics insights—is delivered to the 

user as a Security-as-a-Service output, fulfilling the request. 
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Figure 32 Initial ROBUST-6G architecture design for integration of XAI module 

5.3 Requirements and Guidelines for XAI Measures for 6G Security 

In 6G networks, XAI is not only essential for transparency but also plays a critical role in enhancing security, 

trust, and compliance. As AI-driven IDS become more sophisticated, it is imperative to establish clear 

requirements that ensure these systems remain resilient to adversarial attacks, aligned with legal and ethical 

frameworks, and accessible to diverse user groups. 
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The following requirements have been derived through a combination of industry best practices, regulatory 

guidelines (e.g., GDPR, AI Act), and security principles to ensure that XAI-IDS solutions for 6G are both 

trustworthy and effective. Each category of requirements addresses a critical aspect of system functionality: 

• Security Requirements: Ensure resilience against adversarial attacks and unauthorized access while 

maintaining explainability without exposing sensitive data. 

• Model Requirements: Define how explainability techniques should be integrated into the AI model's 

decision-making process to balance interpretability with accuracy. 

• Legal and Ethical Requirements: Ensure compliance with AI regulations, privacy laws, and ethical 

guidelines to maintain fairness, transparency, and human oversight. 

• Accessibility Requirements: Guarantee that XAI-IDS solutions are usable by all security analysts, 

including those with disabilities, by incorporating assistive technologies and multilingual interfaces. 

• Usability Requirements: Focus on improving user experience by providing meaningful explanations, 

interpretability insights, and visualization tools to enhance decision-making. 

By following guidelines, 6G systems can use AI to detect and counter threats while offering explanations that 

improve trust, compliance, and efficiency in complex network settings. 

5.3.1 Security requirements  

 

ID Requirement description Priority Justification Functional 

/ Non-

functional 

SEC.RQ.1 

 

The system should be resilient 

against adversarial attacks targeting 

explainability mechanisms. 

SHOULD Reduces risks of adversarial 

manipulation of feature 

importance scores. 

Non-

functional 

SEC.RQ.2 

 

The system must ensure that 

explainability techniques do not 

expose sensitive user data or attack 

patterns that could be exploited. 

MUST Prevents leakage of critical 

security insights that could 

benefit attackers. 

Non-

functional 

SEC.RQ.3 

 

The XAI-IDS must support role-

based access control (RBAC) to 

restrict access to explanations based 

on user privileges. 

MUST Limits exposure of model 

insights to only authorized 

users. 

Functional 

SEC.RQ.4 

 

The system should provide real-

time explainability for critical 

alerts, ensuring timely incident 

response. 

SHOULD Helps security teams react 

quickly to threats by 

understanding AI-based 

decisions in real time. 

Functional 

SEC.RQ.5 

 

The XAI-IDS must log 

explainability outputs to support 

forensic investigations. 

MUST Allows security analysts to 

review historical IDS 

explanations for compliance 

and threat analysis. 

Functional 

SEC.RQ.6 The IDS must be adaptable across 

different network environments, 

including virtualized and multi-

vendor infrastructures. 

MUST Ensures robustness against 

adversarial attacks targeting 

diverse network 

configurations. 

Functional 
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Table 7 Security requirements for integration of XAI in 6G 

5.3.2 Model requirements  

ID Requirement description Priority Justification Functional 

/ Non-

functional 

MOD.RQ.1 The IDS framework should 

integrate XAI techniques for real-

time adversarial detection and 

mitigation. 

SHOULD Enhances model 

interpretability, enabling 

better identification of 

adversarial threats. 

Functional 

MOD.RQ.2 The system should use 

explainability methods to assess 

the impact of adversarial samples 

on ML model decisions.  

SHOULD Improves understanding of 

feature significance and 

reduces false positives in 

IDS detection. 

Functional 

MOD.RQ.3 The IDS framework should 

support a zero-touch detection 

mechanism to enhance resilience 

against evolving attack 

techniques. 

SHOULD Enables proactive defence 

strategies without requiring 

manual intervention. 

Functional 

MOD.RQ.4 The XAI-IDS must have means 

integrate explainability techniques 

directly into the model training 

and evaluation phases. 

MUST Ensures transparency, 

interpretability, and 

trustworthiness beyond 

post-hoc explanations. 

Functional 

MOD.RQ.5 The system should utilize SHAP 

as the primary explainability 

method for feature importance 

ranking. 

SHOULD SHAP offers robust 

theoretical foundations for 

feature contribution 

analysis, ensuring accurate 

explainability. 

Functional 

MOD.RQ.6 The explainability 

methods should not significantly 

compromise detection accuracy. 

SHOULD 

NOT 
Balancing interpretability 

with predictive performance 

ensures an effective IDS. 

Non-

functional 

MOD.RQ.7 The system should support 

confidence scores for predictions 

to assess classification reliability. 

SHOULD Enables risk assessment 

based on probabilistic 

model outputs. 

Functional 

MOD.RQ.8 The system may provide 

comparative performance 

evaluation before and after feature 

selection. 

MAY Demonstrates the 

effectiveness of feature 

refinement in improving 

model performance. 

Functional 

MOD.RQ.9 The system must be adaptable 

across different datasets and 

attack scenarios, including 5G/6G 

environments. 

MUST Ensures scalability and 

robustness across diverse 

cybersecurity challenges. 

Functional 

MOD.RQ.10 The system should minimize bias 

in feature importance rankings to 

ensure fairness in intrusion 

detection. 

SHOULD Prevents discrimination 

against certain types of 

traffic or network 

behaviours. 

Non-

functional 

Table 8 Model requirements for integration of XAI in 6G 

5.3.3 Legal and ethical requirements  
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ID Requirement description Priority Justification Functional 

/ Non-

functional 

LEG.RQ.1 The system must allow human 

oversight and override mechanisms 

where security analysts can correct 

or refine explainability outputs. 

MUST Ensures human control over 

AI-driven decisions in 

cybersecurity. 

Functional 

LEG.RQ.2 The system must comply with 

GDPR and relevant data protection 

regulations regarding explainability 

in automated decision-making. 

MUST Ensures legal compliance 

and mitigates risks related 

to explainable AI in 

cybersecurity. 

Non-

functional 

LEG.RQ.3 The XAI-IDS framework must 

provide an explainable reasoning 

mechanism for all AI-based 
security decisions, enabling end-

users to understand the rationale 

behind alerts and classifications. 

MUST Ensures that individuals 

affected by automated IDS 

decisions can contest or 
request human intervention, 

aligning with GDPR. 

Functional 

LEG.RQ.4 The XAI-IDS must support 

mechanisms that allow users to 

access, rectify, and erase personal 

data captured in IDS logs where 

legally applicable. 

MUST Empowers individuals to 

maintain control over their 

personal data in security 

logs, per GDPR 

Functional 

LEG.RQ.5 The XAI-IDS must classify itself 

within the AI Act’s risk categories 

and ensure compliance with 

associated legal obligations 

MUST Ensures regulatory 

alignment and legal 

compliance before 

deployment. 

Functional 

LEG.RQ.6 The XAI-IDS should provide 

auditability logs for AI-based 

decision-making processes and 

generate explainability reports for 

regulatory compliance. 

SHOULD Ensures traceability and 

accountability of AI-driven 

IDS decisions under AI Act 

transparency & 

documentation provisions. 

Non-

functional 

LEG.RQ.7 
The IDS system should implement 

gender-inclusive design principles 

in user interfaces and alert 

notifications if considered as 

needed i.e. not all systems require 

gender-balance. 

SHOULD Ensures that security 

professionals of all genders 

can effectively interpret 

alerts and system 

recommendations, 

following EU Gender 

Mainstreaming Guidelines. 

Non-

functional 

Table 9 Legal and ethical requirements for integration of XAI in 6G 

5.3.4 Accessibility requirements  

 

ID Requirement description Priority Justification Functional 

/ Non-

functional 

ACC.RQ.1 The XAI-IDS should provide an 

API for integration with other 

security tools (SIEMs, SOARs, 

etc.). 

SHOULD Enables interoperability 

with broader security 

ecosystems. 

Functional 
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ACC.RQ.2 The system must provide 

accessibility features such as 

assistive technologies (screen 

readers, keyboard navigation) for 

analysts with disabilities. 

MUST Ensures compliance with 

accessibility standards and 

usability for all users. 

Functional 

ACC.RQ.3 The system should support 

multilingual explainability 

interfaces to accommodate diverse 

users. 

SHOULD Increases accessibility for 

global security teams. 

Functional 

Table 10 Accessibility requirements for integration of XAI in 6G 

5.3.5 Usability requirements  

 

ID Requirement description Priority Justification Functional 

/ Non-

functional 

USB.RQ.1 The XAI-IDS should provide local 

and global interpretability insights 

for detected intrusions. 

SHOULD Helps analysts understand 

both individual and overall 

model decisions. 

Functional 

USB.RQ.2 The system must allow users to 

audit the decision-making process 

of the IDS through logs and reports. 

MUST Ensures traceability and 

accountability in AI-based 

security decisions. 

Functional 

USB.RQ.3 The system may integrate 

visualization tools for SHAP-based 

feature importance analysis. 

MAY Enhances user 

understanding and 

debugging of IDS 

decisions. 

Functional 

USB.RQ.4 The system must not introduce 

significant computational overhead 

that impacts real-time intrusion 

detection performance. 

MUST 

NOT 
Ensures that explainability 

methods do not slow down 

IDS operations. 

Non-

functional 

USB.RQ.5 The system should include adaptive 

explainability techniques that adjust 

complexity based on user expertise 

(e.g., basic summaries for non-

experts, detailed analysis for 

analysts). 

SHOULD Enhances usability by 

making explanations 

meaningful for different 

user roles. 

Functional 

USB.RQ.6 The system should provide an 

evaluation mechanism to assess 

normal vs. adversarial data 

behaviour. 

SHOULD Supports continuous 

monitoring and adaptation 

to new attack vectors. 

Functional 

Table 11 Usability requirements for integration of XAI in 6G 

5.4 Design Guidelines for Integrating XAI In 6G Security Systems 

While the detailed requirements for integrating XAI define specific system behaviors, design guidelines serve 

as a practical, high-level entry point to orient stakeholders toward building responsible, compliant, and secure 

systems. These guidelines were developed to: 

• Translate technical requirements into actionable, role-aware principles 

• Offer immediate orientation to stakeholders unfamiliar with in-depth system details 

• Support early-stage planning and cross-disciplinary collaboratio 

• Provide a foundation for consistently integrating explainability across the 6G security architecture 
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They are particularly useful before diving into requirement specifications, as they help contextualize why 

explainability matters in 6G security, what themes to prioritize, and how to align design intentions with 

functional, legal, and ethical goals. Many different stakeholders may use these guidelines, for example: 

 

 

• AI Developers & Data Scientists can use these principles to guide model architecture, training 

workflows, and explanation technique selection (e.g., choosing SHAP or counterfactuals based on goal 

and stakeholder). Guidelines help them ensure XAI is not an afterthought, but part of the model 

lifecycle. 

• 6G System Architects & Network Designers can rely on these to incorporate explainability as a 

design goal across layers (e.g., Exposure, AI Services, ZSM). Guidelines help align high-level 

architectural decisions (e.g., where to place explainability modules) with trust and compliance goals. 

• Security Analysts & Operators can use the guidelines to advocate for interpretability features that 

support day-to-day tasks like alert triage, incident response, and post-mortem forensics. They ensure 

that explainability tools are useful, understandable, and role-specific. 

• Policy Makers, Legal Teams & Ethics Boards can Reference these as design-aware tools for 

assessing whether deployed systems meet ethical and regulatory expectations. Guidelines help connect 

abstract AI principles (e.g., human oversight, GDPR compliance) to real architectural touchpoints. 

• Vendors & Integrators can use guidelines to evaluate whether third-party XAI solutions or modules 

align with broader 6G integration requirements. They enable early filtering before detailed 

requirement-level conformance testing., 

Each guideline is grounded in the extensive set of requirements derived in Section 5.3 , ensuring that they 

reflect both regulatory alignment (e.g., GDPR, EU AI Act) and technical feasibility within the 6G architecture. 

 

5 Core Design Guidelines for XAI Integration in 6G: 

 

 
#1: Secure Explainability by Design 

 XAI systems must be designed with built-in defences against adversarial manipulation, data 

leakage, and unauthorized access to explanations. 

 This principle ensures that explainability mechanisms are not weak links in security. Role-based 

access control (RBAC), explainability filtering, and resilience against feature manipulation must be 

embedded from the start. This protects sensitive model insights while maintaining transparency for 

authorized users. 

 
#2: Embedded Explainability Throughout the Model Lifecycle 

 Explainability must be an integral part of the AI model lifecycle—from design and training to 

deployment and monitoring—enabling continuous transparency and adaptive trust. 

 Rather than relying on post-hoc methods, models must integrate explainability techniques during 

training and evaluation phases, ensuring interpretability is a core objective. Techniques like SHAP or 

counterfactuals should be used where appropriate, with minimal impact on detection performance. 

 
#3: Regulatory Alignment and Human Oversight as Default 

 XAI-IDS must support full traceability, user control, and legal rights (access, rectification, erasure) 

to comply with GDPR, the EU AI Act, and emerging cybersecurity laws. 

 This design principle ensures that explainable systems are not only transparent but also contestable. 

Every AI-driven decision must be documented, justifiable, and reversible by human experts. This 

enhances legal accountability and ethical AI assurance. 

 
#4: Inclusive and Accessible Explanation Interfaces 



 

 
 Deliverable D3.2 

 

Dissemination level: Public Page 67 / 74 
 

 XAI systems must provide explanations that are accessible to users with varying abilities, roles, 

and linguistic backgrounds. 

 Explainability should not be a barrier—it must be democratized. Interfaces must include accessibility 

features (e.g., screen reader support, keyboard navigation) and offer multilingual options. This 

ensures inclusivity and usability across the global and distributed 6G operator landscape. 

 
#5: User-Centric, Context-Aware Explanation Delivery 

 Explanations must be tailored to user expertise and operational context, supporting both high-level 

summaries and detailed forensic insights. 

 This guideline promotes adaptive explainability—giving novice users high-level rationale, while 

providing security analysts with in-depth interpretability tools (e.g., interactive SHAP visualizations, 

log-based reasoning trails). This enables trust and effective decision-making across roles. 

 

5.5 Evaluation Metrics for XAI Integration in 6G 

The integration of Explainable Artificial Intelligence (XAI) into 6G networks is essential to ensure 

transparency, interpretability, and trust in AI-driven decision-making. As AI becomes a foundational 

technology in 6G—supporting functions like security management, threat detection, traffic orchestration, and 

resource allocation—its decisions increasingly affect critical operations. However, many of these AI models 

operate as “black boxes,” making their reasoning difficult to interpret. This lack of explainability creates 

significant risks, particularly in high-stakes environments where compliance, accountability, and operational 

transparency are required. 

In the context of the ROBUST-6G project, explainability is not a theoretical add-on—it is a core element of 

the project's vision for trustworthy, robust, and autonomous AI-driven security. As emphasized in Objective 

3 of the project, XAI is critical for making AI models both operationally reliable and verifiably secure, 

especially under adversarial conditions. XAI metrics are thus instrumental in assessing whether the AI-based 

security functions integrated in ROBUST-6G meet the trust, fairness, privacy, and sustainability 

requirements defined in the project architecture. 

To this end, evaluation metrics must capture both the technical quality of explanations and their human 

usability. These include: 

• Fidelity, which assesses how faithfully an explanation reflects the underlying model's logic. 

• Interpretability, which gauges how easily human operators (e.g., security analysts or network 

administrators) can understand and act upon the explanation. 

• Completeness, referring to whether the explanation discloses all relevant factors in a decision. 

• Consistency, which ensures similar inputs yield similar explanations—important in maintaining 

system trustworthiness. 

• Relevance, which checks whether the explanation highlights the most impactful features. 

These metrics support the design and deployment of AI agents in the ROBUST-6G Zero-Touch Security 

Management and Distributed AI-driven Security modules, where automated actions may need to be 

explained to human operators or certified under regulatory frameworks. XAI metrics also play a key role in 

the evaluation and validation of AI-based functions in Use Case 1, where explainability is applied to 

decentralized model generation and secure decision-making. For example, security operators may need to 

understand why a federated learning model flagged a particular traffic pattern as anomalous or whether a 

mitigation action proposed by the orchestrator is justifiable. In such contexts, XAI metrics help ensure that 

model outputs are both transparent and actionable. 

To formalize this evaluation, ROBUST-6G leverages frameworks like REVEL (Robust Evaluation 

VEctorized Loca-linear-explanation), which define quantifiable metrics such as: 
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• Local Concordance: alignment of explanation with the model’s local behavior. 

• Prescriptivity: ability to identify how changes in input affect decisions. 

• Conciseness: simplicity and clarity of explanations. 

• Robustness: stability of explanations under small input perturbations. 

These metrics will be used within the project to validate the trustworthiness of XAI-based components, 

especially those deployed for threat detection, privacy-preserving learning, and orchestration decision-

making. Nevertheless, applying XAI metrics in a 6G setting presents unique challenges. Scalability becomes 

critical, as explanations must be generated for potentially thousands of edge devices and services. Real-time 

constraints require explanations to be low-latency and computationally efficient, especially in time-sensitive 

scenarios like attack mitigation. Furthermore, the diversity of users—from network engineers to external 

verticals—requires explanations to be adaptable in detail and format. 

In summary, XAI metrics are a fundamental building block of ROBUST-6G's approach to trustworthy AI. 

They not only support the technical evaluation of models but also serve as enablers for secure, transparent, 

and accountable decision-making within the broader 6G ecosystem envisioned by the project.   

5.6  Standardization and Compliance Recommendation 

5.6.1 Current Standards available for XAI in 6G security.  

The development of standards for Explainable AI (XAI) in 6G security is still in its early stages, with only a 

few working groups actively contributing to this effort. Currently, there are limited formalized standards, 

though organizations like IEEE, NIST, ISO, and W3C are engaged in research and discussions. The National 

Institute of Standards and Technology (NIST) introduced NISTIR 8312, titled "Four Principles of Explainable 

Artificial Intelligence," which, while not a formal standard, emphasizes ethics and human-centered AI. 

Similarly, the World Wide Web Consortium (W3C) published an online post in 2018 titled “Toward a Web 

Standard for Explainable AI?” signaling growing interest in XAI standardization. 

As of March 2025, several standards and guidelines have been developed to enhance the transparency and 

trustworthiness of Artificial Intelligence (AI) systems through Explainable AI (XAI) methodologies. Notable 

among these are IEEE 2894-2024: Guide for Explainable Artificial Intelligence (XAI) Techniques and Their 

Evaluation, IEEE P2976: Standard for Explainable Artificial Intelligence (XAI), and European Union's 

Regulatory Framework for AI Systems. Following is a brief account of the aforementioned standards. 

The IEEE 2894-2024: Guide for Explainable Artificial Intelligence (XAI) Techniques and Their Evaluation 

provides a structured approach to developing, implementing, and assessing explainable AI models. This 

standard covers key areas such as definitions and classifications of XAI techniques, application scenarios, 

evaluation metrics, and best practices for AI transparency. It establishes a technological framework for 

integrating explainability into AI systems, ensuring that machine learning models can provide understandable 

and interpretable outputs. Additionally, it outlines methods to assess explainability across different stakeholder 

groups, including developers, regulators, and end-users. A crucial focus of IEEE 2894-2024 is evaluating XAI 

methods using quantitative and qualitative metrics. The guide discusses different XAI techniques, such as 

feature attribution, rule-based explanations, counterfactual reasoning, and visual interpretability methods. It 

also provides high-level recommendations for selecting the most appropriate XAI technique based on the 

specific needs of AI applications across industries. 

The IEEE P2976: Standard for Explainable Artificial Intelligence (XAI) [IEEE+24] aims to provide a 

framework for defining, developing, and evaluating explainable AI systems. This standard focuses on key 

areas such as defining explainability requirements, categorizing XAI methods, establishing evaluation metrics, 

and ensuring interoperability across AI models and systems. It sets forth mandatory and optional requirements 

that AI methods, algorithms, and applications must meet to be considered explainable. The standard also 

introduces XML schemas to facilitate the sharing and standardization of explainability-related information 

across different AI implementations. IEEE P2976 categorizes AI explainability into partially explainable and 

fully explainable methods, offering a structured approach to understanding how AI decisions are made. It 

defines technical and human-centered explainability requirements, ensuring that explanations are not only 

technically valid but also understandable to end users with different levels of expertise. 

https://standards.ieee.org/ieee/2894/11296/
https://standards.ieee.org/ieee/2976/10522/
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5.6.2 Gaps present in the current standards 

Despite their comprehensive approaches, both IEEE P2976 and IEEE 2894-2024 have certain limitations. 

IEEE P2976 does not mandate specific XAI techniques for different use cases, creating ambiguity in practical 

implementation. It also lacks detailed guidance for domain-specific explainability challenges, such as those in 

healthcare and finance, where regulatory constraints vary. Furthermore, it does not extensively cover real-time 

XAI systems that require dynamic and adaptive explanations in critical applications. IEEE 2894-2024, while 

providing a structured framework for XAI, does not enforce mandatory requirements, leaving implementation 

choices to individual developers. It also lacks specific guidelines for real-time AI explainability, particularly 

in high-risk domains like autonomous systems and healthcare. Additionally, it does not fully address 

adversarial robustness, a crucial factor in AI security and trustworthiness. 

5.6.3 Recommendations for standards  

To address the limitations in existing standards, we recommend prioritizing real-time explainability, domain-

specific XAI implementations, security enforcement on XAI components, and XAI based adversarial 

robustness. New standards should establish mandatory real-time/close to real time XAI mechanisms capable 

of detecting and mitigating inference-based adversarial attacks dynamically. This includes the standardization 

of uncertainty quantification techniques that adjust model responses based on uncertainty metrics, thereby 

preventing AI-as-a-Service (AIaaS) models from being exploited through adversarial queries. Furthermore, 

guidelines should define energy-efficient XAI mechanisms that enhance real-time model interpretability while 

minimizing computational overhead. 

In addition, ADMM-based optimization techniques should incorporate privacy-preserving constraints to 

ensure secure communication and model updates while maintaining explainability. Secure aggregation 

techniques must also be standardized to mitigate risks associated with model inversion and poisoning attacks 

without compromising interpretability. Moreover, future standards should introduce explainable adversarial 

defense mechanisms that dynamically adapt to evolving attack vectors in real time. This should include XAI-

based anomaly detection frameworks designed to enhance Intrusion Detection Systems (IDS) by improving 

explainable decision-making, reducing false positives, and strengthening overall system trustworthiness. With 

timely integration of these recommendations, future standards can effectively address ambiguities, real-time 

applicability, and adversarial security challenges in XAI for 6G networks, ensuring greater transparency, 

resilience, and regulatory compliance. 

5.6.4 Benchmarking and Testing Standards for XAI in 6G Systems  

Establishing benchmarking and testing standards for XAI in 6G systems is essential to ensure consistency, 

reliability, and regulatory compliance. Defining performance benchmarks for XAI requires the development 

of standardized metrics to evaluate model explainability across diverse 6G use cases, including network 

security, autonomous operations, and real-time decision-making. These benchmarks should assess the fidelity, 

interpretability, stability, and computational efficiency of XAI models, ensuring that explanations remain 

meaningful and actionable without introducing excessive complexity or latency. Furthermore, benchmarking 

should incorporate domain-specific evaluation criteria to account for the varying levels of explainability 

required in different sectors, such as telecommunications, finance, and healthcare. 

To enhance XAI reliability, standardized validation approaches must be established to ensure consistency in 

interpretability methods across different AI models and applications. This includes the implementation of 

cross-validation techniques, adversarial robustness tests, and stress-testing frameworks that evaluate how XAI 

models perform under varying conditions, such as real-time inference, distributed learning environments, and 

adversarial settings. Additionally, validation protocols should ensure that XAI methods remain effective when 

applied to dynamic 6G infrastructures, where AI-driven decisions must be continuously monitored and adapted 

based on evolving network conditions. 

Compliance testing is another critical aspect of XAI standardization, ensuring adherence to regulatory 

requirements related to AI fairness, bias detection, and interpretability. Testing frameworks should incorporate 

fairness-aware evaluation metrics that assess AI models for potential biases based on demographic, 

geographical, or systemic factors. Additionally, compliance protocols should require automated bias detection 

mechanisms that identify and mitigate discriminatory patterns in AI decision-making. Beyond fairness, 

interpretability testing should be mandated to confirm that AI-driven security and optimization strategies can 
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be transparently understood and verified by stakeholders, including network operators, regulatory bodies, and 

end-users. 

 

6 Conclusions 

The findings in this report reinforce the necessity of a holistic approach to 6G network development, 

emphasizing robustness, security, and sustainability as fundamental design principles. The proposed 

architectural framework and enabling technologies offer a pathway toward future-proof 6G networks that can 

dynamically adapt to changing environmental conditions and user demands. A major takeaway from this 

deliverable is the integration of Explainable AI (XAI) in 6G security to enhance transparency, accountability, 

and trust. The adoption of XAI-based security mechanisms will ensure AI-driven decisions are interpretable, 

fair, and aligned with regulatory and ethical standards. Moreover, by addressing adversarial threats, federated 

learning vulnerabilities, and AI biases, this research paves the way for a more secure and resilient AI-enabled 

6G ecosystem. 

Each chapter of this deliverable contributes critical insights into different aspects of AI-driven security for 6G 

networks: 

• Chapter 1 introduces the motivation, objectives, and scope of the report, emphasizing the need for AI-

driven security in 6G. It sets the foundation for integrating XAI and energy-efficient security solutions. 

• Chapter 2 identifies security threats in AI/ML for 6G, including adversarial attacks, model poisoning, 

and federated learning vulnerabilities. The chapter highlights risks such as evasion attacks and data 

poisoning that can compromise AI models in 6G networks. 

• Chapter 3 explores XAI techniques such as SHAP, LIME, and saliency mapping to enhance the 

interpretability of AI-driven security mechanisms. 

• Chapter 4 focuses on sustainable AI-driven security, emphasizing techniques such as pruning, 

quantization, and knowledge distillation to optimize energy efficiency while maintaining high security 

levels in 6G networks. 

• Chapter 5 presents proactive security mechanisms, including adversarial training, secure model 

aggregation in federated learning, and AI-driven anomaly detection to enhance security resilience and 

mitigate evolving threats. 

Sustainability remains a key priority in 6G development. AI-driven energy-efficient security solutions are 

critical to balancing performance with environmental impact. As 6G networks expand, optimizing resource 

allocation and minimizing power consumption through AI-based solutions will be crucial in meeting global 

sustainability goals. Future advancements in green AI, including energy-harvesting technologies and 

sustainable computing frameworks, will further contribute to the long-term viability of 6G systems. 

Resilience and adaptability are also core components of 6G security operations. The ability to dynamically 

adjust security mechanisms in response to evolving threats is essential. Leveraging AI for real-time threat 

detection, proactive defense strategies, and anomaly detection will enable 6G networks to withstand emerging 

cyber risks while ensuring uninterrupted service availability. 

Collaboration between academia, industry, and policymakers will be fundamental in realizing these 

advancements. Standardization efforts must align with technological innovations to ensure seamless 

integration of AI-driven security frameworks. ROBUST-6G actively collaborates with standardization bodies 

to ensure that AI-driven security solutions align with global standards, regulatory requirements, and industry 

best practices. This cooperation is essential for fostering interoperability, compliance, and the seamless 

integration of trustworthy and sustainable AI frameworks in 6G networks. Moreover, continued investment in 

interdisciplinary research is necessary to refine XAI methodologies, enhance adversarial defence mechanisms, 

and develop robust governance frameworks for AI-enabled 6G networks. 

In conclusion, the success of 6G will depend on its ability to balance security, sustainability, and resilience. 

By leveraging XAI for transparency, optimizing AI-driven security for energy efficiency, and fostering 

collaboration among stakeholders, this research sets the foundation for a trustworthy, robust, and future-ready 
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6G network. Another crucial area for future exploration is the intersection of AI security and regulatory 

compliance. The deployment of AI-driven security measures in 6G must adhere to global standards on data 

protection, fairness, and ethical AI use. Developing standardized XAI assessment frameworks will be essential 

to ensuring explainability and transparency in AI-driven security decisions. The research also highlights the 

importance of interdisciplinary collaboration to drive innovation in AI-enabled 6G security. Close cooperation 

between AI researchers, cybersecurity experts, telecom industries, and policymakers will be necessary to align 

technological advancements with evolving security and ethical considerations.  

The next phase of research (D3.3) will focus on further refining these strategies, ensuring real-world 

applicability and scalability for next-generation communication systems. Special emphasis will be placed on 

experimental validation, benchmarking security performance, and evaluating the trade-offs between security, 

energy efficiency, and network performance. By addressing these challenges, 6G networks can achieve a 

secure, resilient, and sustainable communication paradigm for the future. 
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