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Abstract 

This deliverable deals with the importance of the trustworthiness of Artificial Intelligence (AI) and 

Machine Learning (ML) systems by assessing the security threats in 6G networks presented in 

ROBUST-6G deliverable D2.1. The assessment conducted is specific to AI/ML security threats, and 

the associated prevention mechanisms for mitigating their risks. To this end, various privacy and 

security threats are explored that may compromise sensitive information, taking special attention to the 

6G key technical enablers and selected cases that were analysed in more detail in D2.1. 

Overall, this report presents a comprehensive approach to developing robust and reliable AI/ML 

systems that protect privacy and data security in 6G networks. 
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Executive Summary 

This deliverable presents a comprehensive examination of the security threats affecting Artificial Intelligence 

(AI) and Machine Learning (ML) systems in the context of 6G networks. As the deployment of advanced 

AI/ML technologies becomes an integral part of 6G operation, understanding and mitigating the associated 

vulnerabilities is paramount to ensuring the confidentiality, integrity, and availability (CIA triad) of these 

systems. This deliverable builds on the fundamental insights provided in the 6G Threat Analysis Report 

(ROBUST-6G deliverable D2.1) and gives a more detailed analysis of adversarial threats, privacy issues, and 

the robustness required for AI/ML models, among a number of other threats that would hinder the proper 

functioning of the AI/ML techniques. Each recognised threat is systematically categorised and assessed, 

highlighting the potential impact on AI/ML systems deployed in 6G environments. 

Along with the assessment of AI security threats, the prevention and mitigation mechanisms associated with 

the assessed threats are also examined in detail. Both assessment and prevention processes are further reviewed 

on the selected key 6G technical enablers and selected cases featured in D2.1, extending this selection to an 

AI-as-a-Service (AIaaS) framework that enables access to AI and ML capabilities through cloud platforms, 

facilitating their deployment and management. 

This deliverable mainly employs a structured methodology based on the STRIDE threat model together with 

the CIA triad. Other methodologies such as Threat Assessment and Remediation Analysis (TARA) have also 

been considered, especially in the mitigation processes of the identified threats where cyber risk remediation 

analysis is also incorporated. Consequently, analyses on the assessment and prevention of AI security threats 

have been carried out using the STRIDE methodology, for systematic identification and mitigation of these 

threat impacting AI/ML systems. 

In conclusion, this deliverable serves as a critical resource for advancing the understanding of security threats 

to AI/ML models in 6G networks, taking into consideration various analyses from a threat assessment and 

mitigation approach. By identifying vulnerabilities and proposing targeted solutions, the ROBUST-6G project 

aims to facilitate the development of secure, resilient, and future-proof communication systems in the context 

of the AI/ML techniques to be used. The insights and recommendations provided in this report are essential 

for fostering innovation and ensuring that AI/ML technologies meet the stringent security requirements of 

next-generation digital ecosystems. 
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1 Introduction 
The goal of Artificial Intelligence (AI) development is to help humans by solving complex tasks and advancing 

societal good. However, recent studies indicate that AI may inadvertently cause harm, such as making 

inaccurate decisions in safety-critical contexts or undermining fairness through unintended discrimination 

against certain groups. As a result, trustworthy AI, which refers to AI systems that are reliable, transparent, 

fair, secure, and respect privacy, has lately received wide attention from the research community due to the 

need to minimize the negative effects that AI may have on people. 

The topic of trustworthy AI is broad and intricate, and studies related to Trustworthy AI can be categorized 

into 6 categories as depicted in Figure 1-1: Classification of studies related to Trustworthy AIFigure 1-1. 

 

Figure 1-1: Classification of studies related to Trustworthy AI 

To begin with, Trustworthy AI is anticipated to possess the qualities of robustness and explainability. In 

robustness terms, we should guarantee that the decisions of the AI model should not change in the case of tiny 

modifications to input data. From the explainability perspective, trustworthy AI must enable human-

understandable explanations to reduce risks and potential harm. The decisions of the AI models cannot be 

taken for granted unless the underlying mechanisms behind their predictions are explained. As a result, 

developing a trustworthy AI system necessitates an insight into how specific decisions are made. 

In addition to robustness and explainability, trustworthy AI must also ensure privacy, availability, 

accountability, and safety. In terms of privacy, AI is expected to safeguard the privacy of all users and prevent 

any leakage of private information. Besides privacy, it is expected that people should have access to AI systems 

whenever they need them, and these AI-driven systems should be simple to use for diverse users. Furthermore, 

no AI system is ever intended to harm anyone, under any circumstances, and it is always expected that user 

safety is a top priority. 

Finally, trustworthy AI should be fair, ethical, and environmentally sustainable. In particular, AI-driven 

systems should ensure fairness for all users and should not discriminate towards certain groups. It also should 

function in complete accordance with all applicable rules and regulations as well as the ethical standards of 

human civilization. From sustainability perspective, AI-driven systems should be environmentally friendly to 

ensure sustainable development. They should, for instance, consume less energy and produce less pollution. 

1.1 Motivation, objectives, and scope 

We should expect future communication networks to comply with all the requirements expressed above, as AI 

is expected to be one of the key enablers of 6G networks. Deep Learning (DL) models are already emerging 

as a helpful tool for assisting with various communication tasks in different network layers. For example, in 

wireless networks, AI/Machine Learning (AI/ML) has been utilized to solve a variety of challenges such as 

encoding/decoding operations, power-allocation/RU selection/beamforming for Multiple Input Multiple 

Output (MIMO) systems, spectrum sensing, Radio Frequency (RF) signal classification, signal authentication, 

and anti-jamming. In core network, AI/ML is used in the Network Data Analytics Function (NWDAF) to 
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enhance network data analytics. In the Orchestration and Management (O&M) layer, AI/ML is being used for 

resource management, fault management, etc. Moreover, we anticipate AI/ML to be a powerful catalyst for 

security-related functions in 6G networks. 

To ensure the trustworthiness of future 6G networks, ROBUST-6G should identify all possible AI-driven 

communication tasks and use cases. We then need to assess the potential weaknesses of these AI systems by 

taking into consideration the main pillars of Trustworthy AI, which is one of the most important objectives 

and scope of this deliverable. And we should focus our efforts on ensuring the required degree of quality for 

each crucial dimension of Trustworthy AI, taking all requirements into account. 

Trying to cope with security threats in telecommunication systems is becoming increasingly difficult as the 

complexity and volume of these threats increase. The expectations from 6G use case requirements and adoption 

of new networking concepts, such as cloud computing, fog/edge computing and Internet of Things (IoT) will 

prevent conventional algorithms previously used to detect attacks in the cybersecurity domain from processing 

the massive data volumes. Thus, it is expected that DL-based AI architectures will play a significant role for 

the security related functions within the 6G network. However, the applications of AI in the field of 

cybersecurity are also encountering difficulties because of the shortcomings of the AI-based methodologies. 

This document also serves as a basis for the other ROBUST-6G technical tasks related to the use of AI/ML 

techniques, which require a high level of robustness, explainability, fairness and accountability for their AI-

based security solutions. 

1.2 Document structure 

The present document is structured as follows. In Section 2, several models and methodologies for threat 

assessment and prevention are discussed, including the TARA and STRIDE models as the most promising 

ones to follow. Section 3 delves into specific threats related to AI and ML systems, such as adversarial attacks 

and privacy concerns, highlighting the importance of having robust security measures in place and including 

the need for explainable AI to ensure transparency in decision-making processes. In Section 4, we emphasise 

various mitigation processes to prevent attacks on AI and ML lifecycles, with the aim of enhancing the security 

of AI and ML systems against identified threats. In Section 5, we present examples of potential threats to 

various 6G technologies, particularly in the physical layer and AI/ML modules. We also discuss in Section 5 

the assessment and prevention of the previously identified threats, emphasising their impact on key enablers. 

Finally, we summarise our conclusions in Section 6. 

2 Methodology for threat assessment and prevention 

In the current state-of-the-art, there are different methodologies that can be used for threat identification in any 

kind of scenario. Methodologies that were described and used in ROBUST-6G deliverable D2.1 such as the 

well-known CIA model (Confidentiality, Integrity and Availability), Microsoft STRIDE [Pot09], ETSI TVRA 

[ETSI TS 102 165-1], or HEAVENS [HEA16-D2], among others. However, there is currently a gap in the 

need for methodologies for threat assessment and prevention beyond threat identification and detection. 

Of the above enumeration, only the Microsoft STRIDE methodology also addresses the assessment and 

prevention phases in addition to identification. Therefore, the STRIDE methodology has been used to carry 

out the presented comprehensive analysis on the assessment and prevention of threats, which affect the security 

of AI/ML systems. 

The principal methodologies that could be used for threat assessment and prevention are listed and described 

below. 

2.1 Threat Assessment and Remediation Analysis 

The Threat Analysis and Remediation (TARA) methodology is part of a MITRE portfolio of Systems Security 

Engineering (SSE) practices [Wyn14]. It presents a systematic approach to assessing and mitigating cyber 

vulnerabilities of systems during their acquisition cycle, which is composed of several key stages, including 

the Cyber Threat Susceptibility Analysis (CTSA), the Cyber Risk Remediation Assessment (CRRA) and 

Knowledge Management (KM). They are illustrated in Figure 2.1. 

The CTSA develops a cyber model of the system to identify plausible attack vectors, while the CRRA selects 

countermeasures from the Catalog to mitigate identified vulnerabilities. The TARA Catalog, as part of the KM, 
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stores information on attack vectors, countermeasures and mitigation maps, enabling a many-to-many 

relationship between vectors and countermeasures. This facilitates the evaluation of the effectiveness of 

countermeasures in different attack scenarios. This TARA Catalog should be kept up to date with relevant data 

to prevent new types of threats and attack vectors from going unnoticed. 

 

Figure 2-1: The TARA process (source: [Wyn14]) 

Although there is currently no related work in the literature that directly applies the TARA methodology to 

AI/ML systems, this methodology is flexible and can be adapted to assess and mitigate threats in a variety of 

contexts, including AI/ML as one of the key technologies for the 6G networks. In this context, Section 3 of 

this report tackles the identification of potential threats that could affect the output of AI/ML models by 

analysing specific attacks such as manipulation of training data, adversarial attacks or exploitation of 

vulnerabilities in the AI/ML model. These capabilities correspond to the first CTSA process of the TARA 

methodology (see Figure 2.1). And in Section 4, similar capabilities to those of the CRRA process are also 

approached, analysing different mechanisms and techniques such as label smoothing or gradient regularisation 

to smooth decisions and reduce robustness to adversarial attacks. The prevention techniques of Section 4 will 

improve the security of AI/ML models and make them more robust against threats. 

2.2 Diamond Model of Intrusion Analysis 

The methodology proposed by the Diamond Model of Intrusion Analysis [CPB13] sets out a formal framework 

for documenting and analysing malicious activity. This model is based on four fundamental characteristics: 

adversary, infrastructure, capability and victim, which are tightly interrelated to provide a comprehensive 

understanding of intrusion events. The methodology emphasizes the importance of hypothesis generation and 

documentation, differentiating between facts and assumptions, which improves the accuracy of the analysis. 

In addition to the above, a scientific approach is applied. This includes principles of measurement, testability 

and repeatability, allowing the formulation of analytical hypotheses and automated correlation of events. The 

structure of the model facilitates the identification of knowledge gaps and the planning of mitigation strategies, 

promoting effective communication and a coordinated response to cyber threats. 
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The Diamond model provides a systematic and adaptable approach to intrusion analysis and assessment, which 

could be used in Section 3 of this report to identify potential threats that could affect AI/ML performance. But 

it underestimates prevention mechanisms for mitigating the identified threats. 

2.3 The STRIDE threat model 

The STRIDE methodology, developed by Microsoft, is a powerful framework for threat modelling and security 

assessment. It identifies six primary threat categories: Spoofing, Tampering, Repudiation, Information 

Disclosure, Denial of Service, and Elevation of Privilege. By systematically addressing each threat type, 

STRIDE helps anticipate potential security issues, ensuring a more comprehensive risk and threat management 

approach. Its structured process simplifies complex cybersecurity challenges, making it easier to understand 

vulnerabilities, potential threats or targets that may present security flaws early in the development cycle. It 

also supports a proactive defence strategy, reducing the likelihood of successful attacks and improving overall 

system resilience. 

Table 2-1 displays the desired property of each of the threats categorised by the STRIDE methodology, with a 

brief definition of each of them. The desired property column also highlights those determined by the CIA 

model. 

Threat Desired property Definition 

Spoofing Authenticity Identity impersonation to gain unauthorized access to systems 

Tampering Integrity (CIA) Unauthorized modification of data or components within a system 

Repudiation Non-repudiability Denial of actions taken by a user without traceability 

Information 

Disclosure 

Confidentiality (CIA) Exposure or leakage of confidential information to unauthorized parties 

Denial of 

Service 

Availability (CIA) Disruption of legitimate access to services through saturation or attacks 

Elevation of 

Privilege 

Authorization Gaining higher permissions to access restricted resources 

Table 2-1: Desirable property and definition of each threat supported by STRIDE 

Using STRIDE, each architectural component in the ROBUST-6G platform could be systematically analysed 

to detect specific threats or specific vulnerabilities, assess their potential impact on the platform and outline 

countermeasures to mitigate these security risks. 

3 Threat assessment to AI/ML models 

This section examines the security threats that could have a major impact on the performance of AI/ML 

systems and disrupt models in the collaborative and distributed settings characteristic of 6G networks. This 

analysis details the need for robustness of AI/ML models, as well as protection against privacy-related attacks. 

3.1 Adversarial threats 

The following are the main threats that make AI/ML models vulnerable, mainly affecting security and privacy 

by manipulating training data and predictions. Among them, we focus on poisoning and evasion attacks, which 

manipulate training data to degrade model performance or create backdoors impacting privacy and model 

accuracy in AI/ML, and alter inputs to cause misclassification, respectively. In addition, this section also 

explores the transferability and data supply chain attacks, which aim to compromise security and performance 

by manipulating data and creating transferable attacks between models. 

3.1.1 Poisoning attacks 

ML systems are vulnerable to a range of adversarial attacks that can compromise their security, privacy and 

utility. Among these threats, poisoning attacks are considered highly likely, especially in distributed ML 

scenarios, due to their ability to subtly and maliciously manipulate the training process and propagate the attack 
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towards many benign models in a collaborative ML environment. Poisoning attacks occur when an adversary 

intentionally injects misleading or corrupted data into the training dataset or alters the learning process itself, 

with the aim of changing the model’s behaviour towards specific, often harmful, objectives. These attacks can 

be deployed in various contexts, targeting different aspects of the ML pipeline, and their impacts can be severe, 

ranging from degraded model performance to privacy breaches and the insertion of backdoors. 

Poisoning attacks can be launched with the intention of degrading the model performance, either in a targeted 

or an untargeted manner [SSW+24a]. If the attacker wants to degrade the overall performance like model 

accuracy for all classes without any particular interest in a target class or objective, they may use untargeted 

attacks. These attacks are often used by randomly perturbing the data labels via techniques like label flipping, 

or by injecting random noise into the model parameters. However, considering the targeted attacks, they 

consider a target property or a class label that gets poisoned, where the adversary aims to modify the model’s 

decision boundary primarily in the targeted label or property. This makes the models to incorrectly classify the 

target class or data with the targeted property. Considering the implementation of the attack, there are two 

types of poisoning [CSS+22]: 1) dirty label poisoning and 2) clean label poisoning. In dirty label poisoning, 

the attacker poisons the model by manipulating the labels in the dataset used to train the model. In clean label 

poisoning, the attacker does not change the labels, instead, they inject malicious triggers or perturbations in 

the data that are difficult to detect but lead to manipulations in the decision boundary and thus heavily impact 

on the model’s decision-making process. 

The attackers may also use poisoning attacks to artificially alter the decision boundary of a model towards a 

specific targeted direction [WHS+22]. This can enhance the success rate of other attacks like inference attacks 

[ZZC+20, WHS+22]. Additionally, backdoor and trigger attacks stemming from poisoning can degrade model 

performance for specific classes. Such triggers can also lead to privacy breaches, where the trigger activates 

when a specific property or data in a private dataset is encountered [WHS+22, NLT+23]. Figure 3-1 shows the 

shift in decision boundary that is triggered via the poisoning attacks. 

 

Figure 3-1: Displacement at the decision boundary caused by poisoning attacks 

As depicted in Figure 3-1, when an adversary poisons the ML model, the decision boundary tends to deviate 

from its original position. In a collaborative ML system, a benign client may correct this boundary back to its 

original form, as the benign client consist of correct data and during local training, the model will optimize 

towards the real boundary. If this decision boundary correction is related with a sensitive attribute in the target 

data, the adversary can identify the benign client consists of the sensitive attribute, which makes the correction. 

Such poisoning triggers leads to attacks like inference, described further in Section 3.1.2. 

3.1.2 Evasion attacks 

Within the last decade, researchers found out that Deep Neural Networks (DNNs) models are vulnerable to 

well-crafted malicious perturbations. Szegedy et al. [SZS+14] were the first to recognize the prevalence of 

adversarial cases in the context of image classification. Researchers have shown that a slight alteration in an 

image can influence the prediction of a DNN model. It is demonstrated that even the most advanced classifiers 

can be fooled by a very small and practically undetectable change in input, resulting in inaccurate classification 

as in Figure 3-2. Since then, a lot of research studies were performed in this new field and these studies were 

not limited just to image classification task. There are several studies available in literature in Natural Language 

Processing (NLP) and audio domain as well. 

Attacks that take advantage of DNN’s weakness can substantially compromise the security of the ML-based 

systems, often with disastrous results. Adversarial evasion attacks mainly work by altering the input samples 

to increase the likelihood of making wrong predictions. These attacks can cause the model’s prediction 
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performance to deteriorate since the model cannot correctly predict the actual output for the input instances. 

In the context of medical applications, a malicious attack could result in an inaccurate disease diagnosis. As a 

result, it has the potential to impact the patient’s health, as well as the healthcare industry [FBI+19]. Similarly, 

self-driving cars employ ML to navigate traffic without the need for human involvement. A wrong decision 

for the autonomous vehicle based on an adversarial attack could result in a tragic accident [GHM23]. Hence, 

defending against malicious evasion attacks and boosting the robustness of ML models without sacrificing 

clean accuracy is critical. Presuming that these ML models are to be utilized in crucial areas, we should pay 

utmost attention to ML models’ performance and the security problems of these architectures. 

 

Figure 3-2: Example of adversarial sample 

In principle, adversarial strategies in evasion attacks can be classified based on multiple criteria. Based on the 

attacker’s goal, attacks can be classified as untargeted and targeted attacks. In the former, the attacker perturbs 

the input image, causing the model to predict a class other than the actual class. Whereas in the latter, the 

attacker perturbs the input image so that a particular target class is predicted by the model. Researchers 

commonly use 3 types of distance metrics, L2, L∞, and L0. The L2 distance is the standard Euclidean distance. 

L∞ distance is the maximum change to any of the pixels. And L0 distance is the number of distinct pixels. The 

last criterion for grouping the adversarial attacks is the threat model. Attacks can also be grouped based on the 

level of knowledge that the attacker has. If the attacker has complete knowledge of the model like architecture, 

weights, hyper-parameters, etc., we call this kind of setting White-box Settings, which is depicted in Figure 

3-3. In this example, the aim of the attacker is to use the target model (H) and find a perturbation which 

maximize the loss with respect to the actual class. 

 
Figure 3-3: Illustration of white-box adversarial attack 

However, if the attacker has no information about the deployed model and defence strategy, we call this kind 

of setting Black-box Settings. This kind of setting is displayed in Figure 3-4. This type of attack scenario is 

based on the concept of attack transferability in adversarial ML. It has been observed that an adversarial sample 

crafted using a surrogate model can fool the target AI model. 

In the previous context, transferability refers to the capability of a malicious attack to be successful against 

another, presumably unknowable model. Since the malicious actor does not have a copy of the target model 

and instead uses his/her own surrogate model, this scenario is also considered as Black-box attack scenario. 
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Crafting Adversarial Samples 

Most attack ideas rely on perturbing the input sample to maximize the model’s loss. In recent years, many 

different adversarial attack techniques have been suggested in the literature. The most known attack algorithms 

for White-Box Attacks are FGSM, BIM, PGD, Deepfool, and CW, and the most known attack algorithms for 

inference query based Black-Box Attacks are Boundary, HopSkipJumpAttack, and Square Attack. 

 

Figure 3-4: Illustration of attack transferability based black-box adversarial attack 

White-Box Attack Algorithms 

Several of the main white-box attack algorithms are discussed below. These attacks attempt to compromise 

the robustness of AI/ML models by generating adversarial samples that mislead systems, exposing critical 

vulnerabilities in tasks such as classification or recognition. This underscores the need to develop more resilient 

models through techniques such as adversarial training. 

Fast Gradient Sign Method (FGSM): FGSM uses the idea to employ a gradient based approach and the 

derivative of the model’s loss function with respect to the input sample to identify which direction the input 

sample’s feature values should be altered to minimize the model’s loss function. Once this direction is 

extracted, it alters all features in the opposite direction simultaneously to maximize the loss. We may craft 

adversarial samples for a model H with a classification loss function represented as J(θ,x,y) by utilizing the 

formula below, where θ denotes the parameters of the model, x is the benign input, and ytrue is the real label of 

our input. 

𝑥𝑎𝑑𝑣 = 𝑥 +  𝜀. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦𝑡𝑟𝑢𝑒)) 

Basic Iterative Method (BIM) and Projected Gradient Descent (PGD): Kurakin et al. proposed a minor but 

significant enhancement to the FGSM. Instead of taking one large step ε in the direction of the gradient sign, 

we take numerous smaller steps α and utilize the supplied value ε to clip the output in this method. This method 

is also known as the Basic Iterative Method (BIM), and it is simply FGSM applied to an input sample 

iteratively. The equation below describes how to generate perturbed images under the linf norm for a BIM 

attack. 

𝑥𝑖
∗ = 𝑥 

𝑥𝑖+1
∗ =  𝑐𝑙𝑖𝑝𝑥,𝜀{𝑥𝑖 + 𝛼. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥𝑖

∗, 𝑦𝑡𝑟𝑢𝑒))} 

where x is the clean sample input to the model, xi* is the output adversarial sample at ith iteration, J is the loss 

function of the model, θ denotes model parameters, ytrue is the true label for the input, ε is a configurable 

parameter that limits maximum perturbation amount in given linf norm, and α is the step size. 

As in the case of a PGD attack, it perturbs an input sample x for a number of “i” iterations in the direction of 

the model’s loss function gradient with a tiny step size. Then, it projects the generated adversarial sample back 

onto the ε -ball of the input after each perturbation step depending on the chosen distance norm. In addition, 

rather than starting from the original point (ε = 0, in all the dimensions), PGD employs a random start, which 

can be defined as: 
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𝑥0 = 𝑥 + 𝑈(−𝜀, +𝜀) 

where 𝑈(−𝜀, +𝜀) is the uniform distribution between (−𝜀, +𝜀). 

Deepfool Attack 

The Deepfool attack is formulated on the idea that neural network models act like linear classifiers with classes 

separated by a hyperplane. Starting with the initial input point xt, the algorithm determines the closest 

hyperplane and the smallest perturbation amount, which is the orthogonal projection to the hyperplane, at each 

iteration. The algorithm then computes xt+1 by adding the smallest perturbation to the xt and checks for 

misclassification. This attack can break defensive distillation method and achieve higher success rates than 

previously mentioned iterative attack approaches. But the downside is, the produced adversarial sample 

generally lies close to the decision boundary of the model. 

Carlini & Wagner (CW) Attack 

Proposed by Carlini and Wagner, it is one of the strongest attack algorithms so far. As a result, it is commonly 

used as a benchmark for adversarial defence research groups, which try to develop more robust DNN 

architectures that can withstand adversarial attacks. It is shown that, for the most well-known datasets, the CW 

attack has a greater success rate than the other attack types on normally trained models. It can also fool 

defensively distilled models, which other attack algorithms find difficult to generate adversarial samples for, 

just as Deepfool attack method. 

To generate more effective and strong adversarial samples under multiple lp norms (distance metrics used to 

limit the perturbation budget), the authors reformulate the attack as an optimization problem which may be 

solved using gradient descent. A confidence parameter in the algorithm can used to change the level of 

prediction score for the created adversarial sample. For a normally trained model, the application of a CW 

attack with a default setting (confidence set to 0) would generally yield to adversarial samples close to the 

decision boundary. And high confident adversaries are generally located further away from the decision 

boundary. 

Inference query based Black-Box Attacks 

In the Black-Box attack scenario, as opposed to the White-Box setup, the adversary only has access to the 

outputs of the target model (either only the decisions or all the probability scores). For the cases where the 

adversary has access to all the probability scores of a given input, Ilyas et al. [IEM19] proposed score-based 

methods using zeroth-order gradient estimation for crafting adversarial perturbations. An attacker has just 

access to decisions in a more practical and realistic scenario that applies to the majority of AI-as-a-Service 

implementations. Brendel et al. [BRB18] introduced Boundary Attack, which generates adversarial examples 

via rejection sampling and achieves comparable performance with state-of-the-art White-Box attacks. 

Nevertheless, their approach requires a relatively large number of model queries, rendering it impractical for 

real-world applications. Later, Chen et al. [CJW20] introduced HopSkipJumpAttack which is a decision-based 

attack method that relies on an estimation of the model’s gradient direction and binary-search procedure for 

approaching the decision boundary. The powerful part of this attack is that it requires significantly fewer model 

queries than previously proposed decision-based Black-Box attack algorithms yet achieves competitive 

performance. Finally, Andriushchenko et. al. [ACF+20] proposed Square Attack which is again a query 

efficient Black-Box attack that is not based on the model’s gradient and can break defences that utilize gradient 

masking. 

When incorporating AI models into the field of security, we should pay closer attention to an important 

drawback of AI-driven systems which are adversarial attacks. AI/ML models have recently been discovered 

to be vulnerable to malicious attacks. In fact, very small and often undetectable changes in data samples are 

enough to fool state-of-the-art classifiers in inference time and lead to incorrect predictions. In the past few 

years, we have witnessed extensive research which show the vulnerability of AI-driven systems in different 

domains like image, text and audio. 

The adversaries who have access to data but no direct access to the model parameters may also use adversarial 

attacks like data poisoning (described in Section 3.1.1) to improve the success rate of black-box inference.  In 

the case where collaborative learning like Federated Learning is done, the attackers can inject backdoored 

model updates even without access to the target model’s data and they can improve the black-box inference 

attack success rate [WHS+22]. They may also use a set of shadow models, enriched with artificial data 
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generated via models like Generative Adversarial Networks (GANs), to create a similar model to the target 

model, such that they can estimate the model behaviour of the target model more accurately, enhancing the 

success rate of black-box inference. These types of inference attacks include GAN-induced membership 

inference [SSS+17, ZZC+20], which attempts to infer whether a particular data point was part of the training 

dataset, property inference [WHS+22], that aims to detect specific properties or features within the dataset that 

are unrelated to the main task. These attacks are often passive, relying on the evaluation of received model 

updates to carry out the attack. The effectiveness of inference attacks can depend on the attacker’s ability to 

accurately identify decision boundary changes in the models with each update [WHS+22, TLG+19]. 

And despite the distributed nature of the communication domain and the heterogeneity of the network, we still 

have the risk of adversarial attacks in a telco environment. However, from the adversary’s perspective, there 

are several important constraints which limits the success of the adversarial attack in a telecom network. 

Firstly, the adversary mostly does not have access to the details (architecture and weights) of the original AI 

model, therefore cannot use it in a White-Box setting for crafting adversarial samples. Secondly, the adversary 

may not have complete knowledge of the input features of the AI model. Lastly, in a practical scenario, the 

adversary does not have the capability to introduce perturbations to all features of the input sample. However, 

despite all these limitations, there are proven ways in literature which increase the success of the attacker. 

Regarding the first limitation, it has been shown that a surrogate AI model might be sufficient to launch an 

effective attack due to the transferability nature of the adversarial samples. Regarding the second limitation, 

the universal adversarial perturbation (UAP) method is proposed for cases where complete input knowledge 

is not available. For instance, recent research studies such as [TKK+23] indicate that the performance of an 

AI-driven D-MIMO system can be degraded by malicious UE’s or RU’s which provide adversarial 

perturbations to the pilot signals. The results indicate that adversarial attacks with optimized perturbations can 

degrade the performance of the network in terms of both spectral and energy efficiency. Thus, smart defence 

techniques such as [TK24] are required to overcome the effects of such attack threats. 

3.1.3 Transferability and data supply chain attacks 

Transferability attacks exploit the phenomenon where adversarial examples which are crafted to deceive one 

machine learning model can also succeed in misleading other models, even if they have different architectures 

or are trained on different datasets. This property poses significant security risks, as it allows attackers to 

generate adversarial inputs without direct access to the target model. 

The concept of adversarial transferability was first explored in [SZS14], where the authors demonstrated that 

adversarial examples generated for one neural network could deceive another network with a different 

architecture. This discovery highlighted the systemic vulnerability of machine learning models to adversarial 

attacks and raised concerns about the robustness of deployed AI systems. 

Countermeasures against transferability attacks include employing adversarial training [MMS+18], where 

models are trained on adversarial examples to enhance their robustness. Another approach is to introduce 

randomness into the model’s predictions or preprocessing steps, making it harder for attackers to generate 

universally transferable adversarial examples [XWZ+17]. Defensive distillation [PMW+16] has also been 

proposed to reduce model sensitivity to adversarial perturbations, although its effectiveness against 

transferability attacks is limited. 

Data supply chain attacks target the integrity of the data used in the training and operation of machine learning 

models. By compromising the data collection, preprocessing, or storage processes, attackers can introduce 

malicious inputs that degrade model performance or induce specific, undesired behaviours. These attacks pose 

significant risks, especially in systems that rely on continuous data updates or automated data pipelines. 

In literature work, [GLG17] explored backdoor attacks, a type of data poisoning where the model behaves 

normally on standard inputs but produces attacker-specified outputs when presented with inputs containing a 

specific trigger pattern. This subtle manipulation allows attackers to implant hidden functionalities into the 

model without affecting its overall performance, making detection challenging. 

Defences against data supply chain attacks include robust data validation and sanitation techniques to detect 

and remove anomalous data points [SKL17]. Implementing secure data collection and storage practices 

reduces the risk of data tampering. Additionally, techniques like differential privacy (DP, see Section 4.2) 

[ACG+16] can help protect against data poisoning by adding noise to the training process, although this may 

impact model accuracy. 
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3.2 Privacy threats 

As Artificial Intelligence becomes increasingly integrated into various aspects of society, concerns about 

privacy threats have correspondingly intensified. AI systems often rely on large datasets that may contain 

sensitive or personal information, making them potential targets for malicious activities. Adversaries can 

exploit vulnerabilities in these models to extract confidential data, infer private attributes, or reconstruct 

original inputs. Such threats not only compromise individual privacy but also undermine trust in AI 

technologies. 

Additionally, efforts to make AI models more transparent and interpretable can inadvertently introduce new 

privacy risks. Techniques designed to explain model decisions might reveal sensitive information or be 

manipulated to conceal malicious behaviour. Understanding and addressing these privacy challenges are 

crucial for developing robust AI systems that protect user data while maintaining transparency and 

accountability. 

3.2.1 Model inversion attacks 

Model inversion attacks harm users’ privacy as they aim to infer information about the input data by observing 

the outputs and the model parameters. The goal is to reconstruct the dataset from knowledge of the predicted 

labels [MLW+23]. These attacks are easier to perform in a white-box context, i.e., when the attacker can access 

the trained model. 

On the other hand, [FLJ+14] is the seminal paper on model inversion attacks. It studies privacy in 

pharmacogenetics, where, given the model and some demographic information on the patient, an attacker can 

predict the patient’s genetic markers. DP is suggested as a countermeasure. However, the authors show that, 

for an effective DP mechanism preserving privacy, the model accuracy is decreased at the point that patients 

are exposed to higher mortality risks. In [FJR15], the authors develop a class of model inversion attacks 

exploiting confidence values revealed along with predictions that are effective in several settings. Two models 

are studied in detail: decision trees and neural networks for face recognition. If the attacker has access to the 

model, thanks to confidence values it can recover recognizable images of people’s faces starting from the label 

(their name). This work also starts the study on basic countermeasures. Although the attack does not target 

specifically distributed learning, it can be applied to any setting where confidence intervals are transmitted 

with the predicted labels at inference time. 

Gradients, which represent the direction and rate of change of a function, are fundamental in training machine 

learning models. They guide the optimization process by indicating how to adjust model parameters to 

minimize errors. However, gradients can inadvertently expose sensitive information. In [ZLH19], researchers 

demonstrated that by analyzing gradients shared during federated learning, an adversary could reconstruct 

input data, such as images or text, that closely resemble the original inputs. This vulnerability is particularly 

concerning in collaborative learning environments, where participants might unintentionally reveal 

confidential data through shared updates. 

The distributed learning setting is especially targeted in [SS15], where the authors propose that clients train 

the model locally with their dataset and share only a subset of the updated parameters and gradients with the 

other participants. This prevents attackers from gaining knowledge of a client’s full local model. However, the 

global model accuracy is affected by this procedure, as lowering the fraction of shared parameters makes 

learning slower and more difficult to converge. Furthermore, the work in [HAP17] shows that, for the 

distributed/federated learning setting, even partial parameter sharing and DP countermeasures can be broken. 

Due to the real-time nature of model updates, the authors show that a GAN can be trained concurrently to 

generate prototypical examples of a target training set. With regards to this, the authors of [WSZ+19] argue 

that GANs are effective in reconstructing data samples from the global dataset distribution but attacking 

specific clients is a more challenging task, although it may be a stronger privacy threat. 

To enhance the ability of a GAN to generate samples from a user-specific data distribution, this work couples 

the GAN model with a multitask discriminator distinguishing i) category, ii) reality, and iii) client identity of 

input samples. The proposed framework can be installed on the parameter server (PS), working invisibly from 

clients. In [GBD+20] optimization strategies for the attacker are designed to increase the ability of the attacker 

to reconstruct the input image from the knowledge of its parameter gradients. The authors prove the attack 

formally and show that it is effective even when the gradient is averaged across large mini-batches and through 

multiple stochastic gradient descent (SGD) steps, as it is common practice for FL. However, the paper in 

[HGS+21] reviews recent developed attacks, including the last mentioned. The authors show that a 
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combination of known defences can significantly weaken the attack. Specifically, 1) the use of batch 

normalization without sharing normalization statistics; 2) the use of large batch sizes (smaller than 32 is not 

safe); 3) the perturbation of gradients (e.g., pruning or addition of noise); 4) encoding inputs. As an alternative, 

a secure defence is to encrypt the gradients with homomorphic encryption, but the computational cost is high. 

The authors of [XHH+22] propose AGIC, an approximate gradient inversion attack that reconstructs the input 

from model/gradient updates across multiple epochs of learning. In this work, the objective function optimized 

by the attacker is modified using the cosine distance between the dummy gradient (generated by dummy 

samples) and the received real gradients. AGIC is 5x faster than the benchmarks in attacking FedAvg and has 

a 50% better peak-signal-to-noise-ratio (PSNR). In [WCG+23], the authors develop an attack resistant to DP 

and gradient perturbation, where a model trained to minimize the reconstruction error on auxiliary data can 

invert gradients despite the countermeasures used. 

3.2.2 Membership inference attacks 

Membership inference attacks (MIAs) are a sort of privacy attack that leaks information about a data record 

that is included in the model training. In other words, given a data record and some auxiliary information, an 

adversary can decide whether the specific record is used in the trained dataset or not [SSS+17]. Membership 

inference attacks can be categorized based on the attacker’s knowledge and capabilities to black-box and white-

box attacks. In black-box attacks, the prediction outputs or confidence scores of machine learning model which 

are considered as auxiliary information, are useful in quantifying membership information leakage. For 

example, a model may show better confidence or lower prediction errors on training data than on unknown 

data. By studying these patterns, the attacker can determine if a certain data point was included in the training 

set. In addition, the adversary may train one or more shadow models that imitate the behaviours of the target 

model using data from a similar distribution. The shadow models’ outputs are used to train a secondary model 

(attack model) that predicts if a data item was included in the target model’s training set. In white-box attacks, 

the attacker has complete control over the model, including its architecture, parameters, and maybe the training 

process. This access opens more opportunities to infer membership. 

Several factors can make a model more vulnerable to membership inference attacks. Those models which 

perform well on training data but have poor performance on unseen data (overfitted models) are vulnerable to 

membership inference attacks due to the considerable disparity in model behaviour. This type of attack gain 

attention in scenarios where sensitive data, such as medical records or financial information, is involved in the 

training set. 

In contrast to traditional membership inference attacks which often rely on static information from models 

such as prediction confidence scores, a dynamic approach is introduced in [LZB+22] that leverages the 

trajectory of the model’s loss over multiple training epochs to infer whether a particular data point was included 

in the training set. By analysing how the loss for a specific data point changes over time, the method can 

distinguish between training data points (which typically have a decreasing loss trajectory) and non-training 

data points (which may have a different trajectory). 

3.2.3 Property inference and FL setting attacks 

Collaborative machine learning and federated learning enable several participants, each with their own training 

dataset, to create a joint model by training locally and communicating model updates. The protocol design of 

federated learning may exhibit vulnerabilities which can be exploited by (malicious) server and participants. 

The server can observe individual updates, tamper with the training process, and control the participants’ view 

of global parameters. Participants can also control parameter uploads. Malicious participant can intentionally 

change inputs or introduce backdoors into the global model. Poisoning attacks and inference attacks are two 

major types of attacks against federated learning [LYY20]. In [MSC+19], it is demonstrated that the model 

updates which are shared during the federated learning process can disclose unintended information about the 

training data of each participant. Potential attacks such as membership inference attacks and property inference 

attacks can be applied in the FL setting to reveal information about the training data of each participant. 

While membership inference attacks focus on the privacy of individual records in the training dataset, in 

property inference attacks, the adversary focuses on the inference of sensitive global properties of the training 

dataset and tries to derive dataset attributes that were not explicitly stored as features or connected with the 

learning task [GWY+18]. An example of property inference is the extraction of information about the ratio of 

women and men from a patient dataset when this information was not stored as an attribute or label in the 
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dataset. To achieve property inference, the adversary needs a classifier, called a meta classifier, to recognize 

patterns within the target model. The meta-classifier is trained using the “shadow training” [AMS+15] 

technique, which involves the adversary training several proxy classifiers to create the training set for the meta-

classifier. Given the target model, the trained meta-classifier predicts whether the target model has a specific 

property or not. 

3.2.4 Extraction attacks 

In this section, model and data extraction attacks in AI/ML are presented, which could infer private parameters 

and replicate the functionality. Techniques like data extraction, reconstruction, and functionality extraction 

could exploit model outputs to uncover sensitive information, which are analysed below. 

3.2.4.1 Model extraction attacks 

Model extraction (ME) refers to the inference of the parameters of a (private) model in a black-box fashion to 

generate a surrogate model that has the same functionality as the original model. It was first proposed in 

[TZJ+16], where the authors show near-perfect performance of the attack for logistic regression, neural 

networks, and decision trees. However, this attack only works when the adversary has full access to the 

predictions, i.e., the probabilities for each class in a classification task. 

In follow-up works, researchers also succeeded in stealing the hyperparameters used during training, which 

can be of high commercial value, as they can highly affect the final model performance [WG18]. 

Countermeasures are also studied in this work, and the authors show that rounding the model parameters before 

sharing them can reduce the effectiveness of the attack. A further step is done in [OSF19] where the authors, 

other than stealing the unknown model architecture, can infer other internal information such as the optimizer 

used for training (e.g., SGD or the ADMM). This information can be used to strengthen adversarial samples 

and models. 

In the recent paper [LPL+24], the authors assess that ML and DL are still highly susceptible to ME attacks. 

Moreover, the advances of optimizers also enhance the adversaries’ capabilities. Nonetheless, adversarial 

learning, which is often used as a tool by attackers, is more effective in controlled environments than in real-

world scenarios. Current defence mechanisms, i.e., model quantization [WG18] may weaken ME but remain 

inadequate. 

3.2.4.2 Data reconstruction attacks 

Data reconstruction attacks are closely related to the previously mentioned MIA attacks (Section 3.2.2) and 

model inversion attacks (Section 3.2.1). While MIAs can predict whether a specific data sample was used to 

train a given known model and model inversion is devoted to reconstructing statistically the input data 

distribution so that it is possible to generate representative samples, data reconstruction aims to reconstruct 

verbatim training examples by exploiting access to a ML model’s outputs, gradients, or internal parameters. 

In [CTW+21], the authors show that it is possible to recover individual training examples by querying a large 

language model (LLM), specifically, GPT-2. Among the data the authors retrieved, there were verbatim texts 

such as personal information (names, phone numbers, email addresses) and IRC conversations. The authors 

proceed by generating text from the attacked model likely to be memorized, then perform an MIA to assess 

whether the generated data was part of the dataset with standard techniques (perplexity score). By taking the 

data with low perplexity, one can find a wide variety of memorized text. This first attempt generates a high 

number of false positives and only detects training data that were seen many times. An improved version of 

the attack samples the text with a decaying temperature in the Softmax classifier, making the model less 

confident of the output. This step, together with an improved version of the MIA, improves the performance 

of the attack.  

Another prominent example is the study by Zhao et al. [ZSE+24], where the authors introduce a novel attack 

method targeting federated learning systems. The attack overcomes previous limitations by breaking the 

anonymity of aggregation, as the leaked data is identifiable and directly tied back to the clients from which it 

originates. By sending clients customized convolutional parameters, this attack ensures that the weight 

gradients of data points between clients remain separate even through aggregation. This approach enables the 

literal reconstruction of a portion of the original training data, recovering exact data points rather than mere 

approximations, thereby escalating privacy concerns in federated learning scenarios. 
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Countermeasures against data reconstruction attacks include techniques like DP [ACG+16], which adds noise 

to gradients or outputs to prevent precise recovery of the original data. Additionally, implementing strict access 

controls, minimizing the amount of information exposed through model outputs, and using secure aggregation 

protocols in federated learning can reduce the risk of data reconstruction. 

3.2.4.3 Model functionality extraction attacks 

Model functionality extraction attacks aim to replicate the behaviour of a target model without direct access to 

its internal parameters or architecture. By strategically querying the target model and observing its outputs, an 

adversary can train a substitute model that approximates the target model’s functionality. This type of attack 

raises significant intellectual property concerns, as it allows for the unauthorized reproduction of proprietary 

models. 

In [TZJ+16], the authors demonstrate that attackers can use prediction APIs to train a local model that mimics 

the target model’s behaviour. By systematically querying the target model with inputs sampled from a chosen 

distribution and recording the outputs, the adversary creates a dataset to train the substitute model. This method 

has been shown effective against various model types, including logistic regression, neural networks, and 

decision trees. 

Defences against model functionality extraction attacks include limiting the number of queries allowed, 

implementing query rate limiting, adding noise to the outputs, or employing techniques like model 

watermarking to detect and trace unauthorized use of extracted models [ABC+18]. Additionally, using robust 

API access policies and monitoring for abnormal querying patterns can help mitigate the risk of such attacks. 

3.3  Explainability threats 

Regarding the recent advancement in AI/ML, there is almost zero human involvement for some of these 

decision-making systems while learning to solve increasingly complex computational tasks. In addition, ML 

models that attain high performance on these tasks are naturally complex black boxes that are hard to 

understand. It is possible to say that a trade-off exists between a model’s performance and transparency. This 

has urged the demand for transparency and led to a question about how the AI/ML systems make decisions. 

Consequently, an active field of research on eXplainable AI (XAI) has emerged with the motivation to make 

the behaviour and predictions of AI/ML systems understandable to humans and provide transparent decision-

making processes of complex AI systems [LFM99, GA19]. 

However, despite the considerable progress ML has made across various domains, it has also been applied in 

cyberattacks. Adversaries have been leveraging ML technology to attack the solutions, aiming to steal sensitive 

information or disrupt normal functioning. These new attacks are different from well-known traditional attacks 

because they do not exploit software vulnerabilities or breach systems. One way of performing an attack is 

that attackers use an exposed API the same way as authorized users do and send artificially designed queries 

over the exposed API to leak sensitive information, instead of directly attacking the systems. 

The fields of adversarial AI and XAI were previously assumed to be unrelated. However, recent discoveries 

suggest a connection between these two fields. The insight continues to pave the way for future work in both 

domains, highlighting the potential of adversarial robust and interpretable models to coexist. Given the above 

advancements, the robustness of prediction explanations becomes a significant and challenging issue, 

especially since users in many applications value the interpretation as much as the prediction itself. Thus, it is 

crucial to understand how much explanations might be affected by minor systematic perturbations to the input 

data, which could be produced by adversaries or measurement biases, for both scientific robustness and 

security concerns. Consequently, this situation calls for a careful balance between them and, consequently, 

further advancements in the development of security frameworks. 

There are several attack methodologies specifically that are designed for model explanations in the literature. 

They provide several strategies for fooling interpretability and explainability of ML algorithms. The attack 

methodologies can be basically divided into three common approaches to fool or steal XAI outcomes. The first 

approach is to fool explainability by using security related attacks such as data poisoning. The second one is 

to consider an explanation as a function of model and data, so there is a possibility to attack by changing one 

of these variables, this category can be considered under model-based attacks. The third one is privacy related 

attacks that aims stealing such as data reconstruction attacks. Based on this categorization, some of the recent 

adversarial XAI methods are briefly introduced below. 
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Security-related attacks 

One of the first adversarial assaults on interpretability approaches is described in [GAZ19]. The researchers 

evaluate the trustworthiness of neural network interpretations produced by several popular feature 

importance methods. They generate perturbations into images, causing unstructured changes in the explanation 

maps while keeping the predicted label unchanged. According to their results, explanation maps from several 

commonly used approaches may be arbitrarily manipulated. This vulnerability results from the high 

complexity and nonlinearity of the models. While [GAZ19] works on unstructured change, later [DAA+19] 

focuses on structured manipulations to reproduce a given target map on a pixel-by-pixel basis. Resilience 

against manipulations is increased by only keeping the explanation process smooth and the model unchanged. 

Another focus of this research is to keep the output of the network constant (approximately). A white-box 

attack configuration is suggested in [ZWS+20] to simultaneously fool deep neural networks and their 

interpreters. In the white box setting, the adversary has complete access to the classifier and the interpreter, 

including their architectures and parameters. The reason for targeting both the model and the interpreter is to 

show that attacks are successful because of the prediction-interpretation gap. The idea behind that interpreter 

is often misaligned with the classifier and interpretability can only explain the behaviour of the classifier 

partially. 

Model-based attacks 

Unlike security related methods, [HJT19] adjusts the complete network to provide manipulated examples 

without hurting the accuracy of the model. Thus, instead of perturbing the input data or changing the 

explanation to a specific target explanation map, modify the parameters of the network. Interpretation results 

are directly incorporated in the penalty term of the objective function for fine-tuning. [DBJ+20] follows the 

same way as [HJT19] and modify the model to manipulate the explanations of common saliency methods to 

hide fairness. For this reason, the method adds an explanation loss term to the original loss in the form of the 

gradient of the original loss during training with respect to a chosen target feature. This work can be considered 

one of the earliest that raises concerns about using explanation methods to check model fairness and 

investigates how these attacks against explanation can mask a model’s discriminatory use of a sensitive feature. 

Privacy-related attacks 

The authors of [SSZ21] were pioneers in exploring the balance between explaining ML models and preserving 

privacy. They analysed the risks of divulging model explanations, where an adversary could trace if a query 

was part of the model’s training set. Their investigation highlighted how certain explanations leak membership 

information, particularly affecting minorities in the training data with uncertain predictions and varied 

explanations. [HBP20] ponder whether an explainable model can maintain data privacy. They introduce an 

approach using locally linear maps (LLM) on simpler models to ensure privacy, revealing only the LLM 

instead of the entire model. Their experiments highlight the trade-offs between privacy, explainability, and 

accuracy. For instance, enhancing explainability often involves reducing privacy, while private training 

benefits from increasing the dimensionality of random projections, illustrating the intricate balance among 

these aspects. Explainability also poses risks in Machine Learning as a Service “MLaaS”, where predictions 

and their explanations are provided for each query. Adversaries can exploit XAI to identify critical features 

and manipulate the training dataset to alter predictions during inference. To counter such attacks, XRAND 

[NLP+23] introduces the concept of achieving Local Differential Privacy (LDP) in explanations. 

4 Prevention of AI/ML threats 

The widespread adoption of artificial intelligence and machine learning has brought about transformative 

benefits across 5G and future 6G technologies. However, this proliferation also exposes AI/ML systems to a 

variety of security threats that can undermine their reliability and trustworthiness. This section explores the 

landscape of AI/ML threat prevention techniques. By examining these areas, it aims to provide a 

comprehensive understanding of how to protect AI/ML systems from malicious exploitation and ensure their 

secure deployment. 

4.1 Adversarial training 

Adversarial training is recognized as an intuitive way of defensive strategy in which the robustness of the deep 

learner is strengthened by training it with adversarial samples. This strategy can be represented mathematically 

as a Minimax game, as below: 
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𝑚𝑖𝑛 𝑚𝑎𝑥
𝜃 |𝛿|| ≤ 𝜖

   𝐽(ℎ𝜃(𝑥 + 𝛿), 𝑦) 

where h denotes the model, J denotes the model’s loss function, θ represents the model’s weights and y is the 

actual label. δ is the amount of perturbation amount added to input x and it is constrained by the given ε value. 

The inner objective is maximized by employing the most powerful attack possible, which is often 

approximated by various adversarial attack types. To reduce the loss resulting from the inner maximization 

step, the outside minimization objective is used to train the model. This whole process produces a model that 

is expected to be resistant to adversarial attacks used during the training of the model. For adversarial training, 

Goodfellow et al. [GSS15] used adversarial samples crafted by the FGSM attack. And Madry et al. used the 

PGD attack to build more robust models, but at the expense of consuming more computational resources. 

Despite the fact that adversarial training is often regarded as one of the most effective defences against 

adversarial attacks, adversarially trained models are still vulnerable to attacks like CW. And it is known that 

although adversarially trained models are somewhat resistant to adversarial samples to some extent, these 

models generally suffer from severe overfitting issue which is known as robustness-accuracy trade-off. 

Ensemble adversarial training 

As explained in the above section, adversarially trained models can be made robust to white-box attacks (i.e., 

with knowledge of the model parameters) to a certain extent if the perturbations computed during training 

closely maximize the model’s loss. However, it is shown that adversarially trained models are still vulnerable 

to Black-box adversarial attacks. As a solution to mitigate Black-box adversarial attacks, Ensemble 

Adversarial Training is proposed [TKP+18]. 

This method augments a model’s training data with adversarial examples crafted on other static pre-trained 

models. In this way, it decouples adversarial example generation from the parameters of the trained model and 

increases the diversity of perturbations seen during training. Intuitively, as adversarial examples transfer 

between models, perturbations crafted on an external model are good approximations for the inner 

maximization problem. 

4.2 Differential privacy 

The concept of Differential Privacy is rooted in providing plausible deniability to participants, typically by 

introducing random noise to their inputs [Beb19]. In ML, DP techniques can be employed to ensure user 

privacy, even if model updates are intercepted by an adversary. Models trained using methods like 

Differentially Private Stochastic Gradient Descent (DP-SGD) [ACG+16] can significantly reduce the risk of 

data leakage through DP-induced noise. 

The 𝜀 − 𝛿 DP framework is formally defined by the following inequality.  

Pr[𝑀(𝑥) ∈ 𝑆] ≤ 𝑒𝜀 Pr[𝑀(𝑦) ∈ 𝑆] + 𝛿 

where a randomized algorithm M satisfies 𝜀 -DP if datasets x and y differ by at most one element ∀ S ⊂ 

Range(M). Here, 𝜀 represents the privacy budget, while 𝛿 denotes the probability of privacy leakage, treated 

as a constant. However, research in [BPS19] indicates that adding noise through DP can reduce model 

accuracy. The work in [TLC+20] explores the application of LDP to secure model parameter updates, 

introducing a collaborative training approach that applies utility-aware perturbations to control noise levels. 

They also highlight that LDP mechanisms can protect against inference attacks. Importantly, DP does not add 

communication overhead, as the structure and architecture of the model parameters remain unchanged. This 

approach could be widely adopted across various devices in future networks, given that DP algorithms and 

noise bounds are well-defined and implemented through DP-based wrappers [YSS+21]. Nevertheless, the 

reduction in model accuracy is a significant trade-off associated with DP, potentially limiting the utility of ML 

models [HGL+20]. 

4.3 Distributed training 

Distributed machine learning (DML) is a method of training machine learning models by sharing data and 

computations over numerous machines or devices. This strategy is especially beneficial when dealing with 

enormous datasets or complicated models that would take too long or require a lot of resources to run on a 
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single system. Another benefit of DML is its tolerance against machine failures, the system can continue 

working, often with minimal disruption. 

This fault tolerance is essential for long-running training jobs and in environments where hardware reliability 

cannot be guaranteed. Various architectures and strategies exist within distributed machine learning, including 

centralized and decentralized approaches. 

Centralized Federated Learning is a type of distributed machine learning in which the model is trained across 

several devices (or clients), yet the data remains local to each device. The devices transmit local model updates, 

not raw data, to a central server for aggregating. 

In Decentralized Federated Learning (DFL), there is no server to aggregate the model updates and coordinate 

the training process. Instead, it leverages a peer-to-peer (P2P) network of devices (or clients) that 

collaboratively train a machine learning model while keeping their data local [MQS+23], as shown in Figure 

4-1. Each device shares its local model update with a subset of other devices in the network, and the 

aggregation of these updates is performed collectively without central coordination. By eliminating the central 

server in the federation, DFL reduces bottlenecks due to server limitations or network congestion. It also avoids 

the need to trust a central entity responsible for the global model creation, as there is no single authority 

controlling the process. Additionally, DFL systems are inherently more robust to system failures since the 

decentralized structure avoids single points of failure. This decentralized approach aligns with distributed 

ledger technologies and can incorporate blockchain mechanisms to ensure the integrity and verifiability of 

model updates. 

Implementing distributed training involves several technical challenges. Synchronization of model updates 

among participating devices is a primary concern. In synchronous training, all devices must wait for each other 

to complete their computations before proceeding, which can lead to inefficiencies if there is significant 

variability in computation times or network delays. Asynchronous training allows devices to operate 

independently but introduces complexities in ensuring convergence and maintaining model consistency. 

Distributed training can improve scalability by leveraging multiple devices to handle larger datasets and more 

complex models. However, it also raises concerns about resource management and coordination. As the 

number of participating devices increases, managing them and their asynchronous communications becomes 

more complex. Efficient scheduling, load balancing, and resource allocation strategies are required to optimize 

performance and resource utilization. 

 

Figure 4-1: Centralized and decentralized federated learning 

In addition to scalability and efficiency, robustness improvement is a critical aspect of distributed machine 

learning. Ensuring that the system can withstand various types of failures and adversarial behaviors is essential 

for reliable operation. Robustness in distributed settings encompasses resilience to both unintentional faults, 

such as network issues and hardware failures, and intentional attacks aimed at disrupting the training process 

or compromising the model. 

One of the primary concerns in distributed machine learning is the presence of Byzantine failures, where nodes 

may behave arbitrarily due to errors or malicious intent. To address this, Byzantine fault-tolerant algorithms 
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have been developed to ensure that the distributed system can reach consensus despite a fraction of faulty or 

malicious nodes. 

Robust aggregation methods play a crucial role in improving robustness. Traditional aggregation techniques 

like averaging are susceptible to outliers or poisoned updates from malicious clients. To mitigate this risk, 

advanced methods such as the geometric median, trimmed mean, and Krum have been proposed. These 

techniques are designed to be robust against a certain number of corrupted updates by minimizing the influence 

of outliers on the aggregated model. 

Addressing adversarial attacks is another critical aspect of enhancing robustness in distributed machine 

learning. Attackers may attempt to perform model poisoning by injecting carefully crafted updates that degrade 

model performance or introduce hidden vulnerabilities. Implementing anomaly detection mechanisms at the 

aggregation server can help identify and discard suspicious updates. 

Handling data heterogeneity is essential for robustness, especially in federated learning scenarios where clients 

possess non-identically distributed data. Variations in data distributions can lead to models that perform poorly 

on certain subsets or are biased toward specific client data. Algorithms can be adapted to account for this 

heterogeneity by weighing updates based on local dataset sizes or quality, ensuring a more balanced and robust 

global model. 

4.4 Input anomaly detection 

Input anomaly detection has emerged as a critical technique for improving the robustness of deep learning 

models. Input anomalies refer to data instances that deviate from the training data distribution. They include 

adversarial examples intentionally crafted to deceive models, out-of-distribution inputs that differ significantly 

from training data, and noisy or corrupted data [GSS15]. Detecting such anomalies is crucial for maintaining 

model performance and preventing erroneous outputs or system failures. 

Various techniques have been developed for anomaly detection in deep learning [CC19]. Statistical methods 

for anomaly detection rely on the assumption that normal data points occur in high-probability regions of a 

statistical model, while anomalies occur in low-probability regions. Techniques such as Gaussian Mixture 

Models (GMMs) fit a mixture of Gaussian distributions to the data. In GMMs, the probability density function 

is defined as a weighted sum of multiple Gaussian components, each characterized by a mean and covariance 

matrix. The mixture weights represent the proportion of each component in the overall distribution. Anomalies 

are detected based on the likelihood of data points under the model; a low likelihood indicates a potential 

anomaly. 

Reconstruction-based methods involve training a model to reconstruct input data and then measuring the 

reconstruction error. High reconstruction error suggests that the input is anomalous. Autoencoders are 

commonly used for this purpose. They consist of an encoder that maps the input to a latent space representation 

and a decoder that reconstructs the input from this representation. The model is trained to minimize the 

difference between the input and its reconstruction over the training data. Variations of autoencoders include 

denoising autoencoders, which are trained to reconstruct clean inputs from corrupted versions by introducing 

noise into the inputs during training. This encourages the model to learn robust representations that capture the 

underlying structure of the data. Sparse autoencoders include a sparsity penalty in the loss function to 

encourage the latent representation to be sparse, promoting feature extraction. 

Deep learning models can be used to estimate the probability density of the data. Normalizing flows are a class 

of models that use a sequence of invertible and differentiable transformations to map a simple base distribution 

to the data distribution. By applying the change of variables formula, they can compute exact likelihoods for 

the data. Anomalies are detected by computing the log-likelihood of inputs; low likelihood indicates an 

anomaly. 

Ensemble methods combine multiple models or techniques to improve anomaly detection accuracy. They can 

involve heterogeneous ensembles, which combine different types of models such as autoencoders, One-Class 

Support Vector Machines (SVMs), and GANs, or homogeneous ensembles, which use multiple instances of 

the same model with different initializations or subsets of data. The anomaly scores from different models are 

aggregated, often by averaging or voting mechanisms, to make a final decision. Calibration of anomaly scores 

from different models is important for effective aggregation. While ensembles can enhance detection 

performance, they require more computational resources. 
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Unsupervised feature learning methods leverage self-supervised learning techniques to learn representations 

without labelled data. Pretext tasks, such as predicting rotations or context in images, are used to train models. 

Anomalous inputs typically result in poor performance on these tasks, allowing for anomaly detection. GANs 

have been adapted for anomaly detection. Training GANs for anomaly detection involves challenges such as 

instability in the adversarial training process and the risk of mode collapse, where the generator fails to capture 

the full diversity of the data distribution. 

Detecting adversarial attacks is critical for the robustness of deep learning models. Input processing techniques 

apply transformations to inputs and observe inconsistencies in model predictions. For example, feature 

squeezing reduces input precision or applies smoothing filters to detect anomalies in the model’s response. 

Statistical tests can be performed in the activation space of hidden layers, estimating densities to identify 

outliers. Bayesian neural networks use uncertainty estimates to detect anomalies, as adversarial examples often 

lead to increased predictive uncertainty. 

Implementing effective input anomaly detection faces several challenges. High-dimensional data common in 

deep learning can make density estimation and anomaly detection computationally challenging due to the curse 

of dimensionality. Complex models may inadvertently learn to reconstruct or classify anomalies as normal, 

especially if anomalies are not sufficiently different from normal data. Defining appropriate evaluation metrics 

is non-trivial due to the imbalanced nature of anomaly detection tasks; metrics like the Area Under the Receiver 

Operating Characteristic Curve (AUROC) and precision-recall curves are commonly used. 

4.5 Knowledge distillation 

Knowledge Distillation (KD) is a model compression technique that transfers knowledge from a large, complex 

model (known as the teacher model) to a smaller, more efficient model (called the student model). Initially 

proposed by Hinton et al. [HGD15], KD aims to reduce the computational cost and memory footprint of deep 

learning models while maintaining a high level of performance. The core idea behind KD is to have the student 

model mimic the behaviour of the teacher model by learning from its predictions, specifically its soft label 

outputs, rather than just learning from the ground-truth labels. 

The teacher model is typically a large, pre-trained neural network with high accuracy, whereas the student 

model is a smaller, simpler model that tries to approximate the teacher's behaviour. The distillation process 

involves training the student model using not just the hard labels (i.e., class labels), but also the soft labels 

generated by the teacher model, which include the probability distribution over all classes. 

As depicted in Figure 4-2, the central concept in Knowledge Distillation is to use the teacher model’s output 

distribution, particularly its logits, to provide additional information to the student model during training 

[GYM+21]. In typical classification tasks, a neural network output for a sample x is a vector of logits z, which 

are unnormalized scores representing the model confidence in each class. These logits are passed through a 

Softmax function to produce probabilities. 

 

Figure 4-2: Feature-based knowledge distillation 

Knowledge Distillation has found numerous applications in compressing deep learning models for deployment 

on resource-constrained devices such as mobile phones and embedded systems. Beyond the standard teacher-

student paradigm, various extensions of KD have emerged. For instance, self-distillation involves training a 
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single model by progressively distilling knowledge within its own layers, while multi-teacher distillation 

leverages multiple teacher models to improve the accuracy of the student model. 

Knowledge distillation for robustness improvement 

In traditional ML and DL systems, Knowledge Distillation helps improve model security by smoothing 

decision boundaries [MOF22]. One of the primary strategies of adversarial attacks is to exploit the sharp 

decision boundaries in overfitted models, where small perturbations to the input data can cause significant 

changes in predictions. Through the distillation process, student models tend to have smoother decision 

boundaries, making them less sensitive to adversarial perturbations. This results in a more robust model that 

is harder for adversarial examples to exploit. 

Additionally, the distillation process enhances the model's ability to generalize by training the student model 

on soft labels produced by the teacher model. These soft labels provide more nuanced information about the 

relationship between classes compared to hard binary labels. As a result, the student model is better equipped 

to handle unseen data, including adversarial inputs that have not been encountered during training. This 

improved generalization directly contributes to making the model less vulnerable to adversarial attacks. 

Reducing model complexity is another benefit of Knowledge Distillation. Larger, more complex models are 

more prone to overfitting and memorizing the data, which makes them susceptible to adversarial attacks. By 

distilling the knowledge of the teacher into a smaller student model, KD reduces the complexity of the model, 

making it less likely to overfit and, consequently, less prone to attacks. This reduced complexity also limits 

the attack surface that adversaries can exploit. 

Furthermore, adversarial examples often rely on the transferability of attacks from one model to another. By 

training a student model using Knowledge Distillation, the generalized knowledge makes it harder for 

adversarial examples designed to attack one model to succeed in attacking another. This cross-model 

transferability is a key factor in many adversarial attacks, and KD helps mitigate this risk. 

One specific application of KD to improve robustness is through defensive distillation. In this variant, 

temperature scaling is applied to the logits of the teacher model, making the student model more resilient to 

adversarial examples. The softer probability distributions provided by the teacher at a higher temperature allow 

the student to learn more distributed representations, reducing its vulnerability to adversarial perturbations. 

This defensive technique has been shown to increase the resistance of models to a variety of adversarial attacks. 

Knowledge distillation in federated learning 

In Federated Learning, where models are trained across multiple clients without centralized data sharing, 

Knowledge Distillation plays an important role in addressing several unique security challenges [QZZ+24]. 

One of the primary issues in FL is dealing with non-IID data, where different clients may have varying data 

distributions. This heterogeneity makes it difficult to build a robust global model. KD mitigates this by training 

a global student model that learns from the local teacher models of various clients, instead of doing an 

averaging or other mathematical model normalization. This process ensures that the global model is robust to 

the different client data distributions. This process reduces the impact of adversarial perturbations that arise 

due to the non-IID nature of the data. 

Model poisoning, where adversarial clients send corrupted updates to the central server, is a major concern in 

FL. Knowledge Distillation helps mitigate model poisoning attacks by transferring only distilled knowledge 

from clients to the central server. Instead of directly sending gradient or model weight updates, KD focuses on 

transmitting the distilled outputs from the local models, limiting the ability of adversaries to inject malicious 

updates. This process makes it harder for malicious clients to compromise the integrity of the global model. 

Model poisoning, where adversarial clients send corrupted updates to the central server, is a major concern in 

FL. Knowledge Distillation helps mitigate model poisoning attacks by transferring only distilled knowledge 

from clients to the central server. Instead of directly sending gradient or model weight updates, KD focuses on 

transmitting the distilled outputs from the local models, limiting the ability of adversaries to inject malicious 

updates. This process makes it harder for malicious clients to compromise the integrity of the global model. 

Another significant benefit of KD in Federated Learning is the reduction of model size and communication 

overhead. In FL, clients frequently communicate updates with the central server, and this communication can 

be a vector for attacks, such as model inversion. By utilizing Knowledge Distillation, a smaller student model 

can be trained on each client, resulting in smaller updates being transmitted to the server. This reduction in 
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communication overhead not only improves system efficiency but also minimizes the information available to 

adversaries, reducing the risk of privacy and inference attacks. 

KD can also enhance personalization in FL, especially in decentralized settings [JK23]. In this context, clients 

may not prioritize the global model (i.e., the aggregation of all client models) in its entirety; instead, KD can 

be used to selectively aggregate specific models or portions of models from other clients. By measuring the 

similarity between intermediate logit outputs—using statistical distances like the Wasserstein distance between 

local models—and determining the optimal combination of model copies from neighbouring clients, each 

client can individually update parameters from a personalized perspective, enhancing performance without 

sharing local data. Co-distillation, based on local validation datasets, allows each client to assess similarity, 

enabling effective collaboration across heterogeneous models (e.g., different layer structures). Distillation thus 

enables interoperability between models with varied architectures, as long as they share at least one common 

layer of matching dimensionality. 

Integrating KD with DP techniques in Federated Learning also enhances security. Differential privacy ensures 

that individual client data remains protected by limiting the information shared between clients and the server. 

When combined with Knowledge Distillation, differential privacy helps ensure that only soft labels or logits 

are transmitted, reducing the risk of model inversion or privacy attacks. 

In sum, Knowledge Distillation offers significant advantages for enhancing the robustness and security of ML 

and DL models, both in traditional centralized settings and in FL environments. In traditional ML/DL systems, 

KD smooths decision boundaries improve generalization, and reduces model complexity, making models more 

resistant to adversarial attacks. In FL, KD addresses challenges posed by non-IID data, adversarial clients, and 

communication overhead. Techniques like defensive distillation and differential privacy, when combined with 

KD, further enhance security in federated systems by reducing vulnerabilities to model poisoning, data 

poisoning, and gradient-based attacks. As a result, Knowledge Distillation emerges as a powerful tool for 

improving the robustness of both centralized and decentralized machine learning systems. 

4.6 Model smoothing techniques 

Apart from Knowledge Distillation, several other model smoothing techniques are widely used in ML and DL 

to enhance robustness, particularly against adversarial attacks. These techniques focus on ensuring the model’s 

decision boundaries are smooth and less sensitive to small perturbations in the input data, which are commonly 

exploited in adversarial scenarios. 

Label smoothing 

One common technique is Label Smoothing, where the ground-truth labels used for training are softened 

[XXQ+20]. Instead of assigning a probability of 1 to the correct class and 0 to all others, label smoothing 

distributes a small portion of the probability mass across incorrect classes. This prevents the model from 

becoming overly confident in its predictions and encourages smoother decision boundaries. Mathematically, 

label smoothing adjusts the true label y for a given class by combining it with a small constant ϵ, resulting in 

smoothed labels. This technique improves robustness by reducing overconfidence in the model’s predictions, 

which can help prevent adversarial examples from causing dramatic shifts in the output. 

Adversarial training 

As detailed before, Adversarial Training is another highly effective method for improving robustness 

[BLZ+21]. By continually exposing the model to adversarial examples during training, it becomes better 

equipped to handle such inputs during inference. In adversarial training, the model is trained to minimize the 

loss not only on regular inputs but also on perturbed versions. This process softens decision boundaries and 

makes the model robust to both clean and adversarial perturbed inputs. 

Dataset Mixup 

Mixup is a data augmentation technique that generates synthetic training examples by interpolating between 

two samples [ZDK+21]. This technique encourages the model to learn smoother decision boundaries by 

training it on examples that lie between classes. By training the model on these interpolated examples, Mixup 

helps the model learn linear relationships between samples, making it more resistant to adversarial attacks that 

exploit sharp boundaries between classes. 
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Dropout 

Dropout is a regularization technique that randomly disables a proportion of neurons during training, 

effectively forcing the model to learn with different subsets of neurons in each training iteration [PPS+18]. 

This introduces randomness and prevents over-reliance on any specific set of neurons, promoting smoother 

decision-making processes. During training, each neuron’s output is multiplied by a binary mask sampled from 

a Bernoulli distribution, and during inference, all neurons are used, but their weights are scaled appropriately. 

Dropout encourages the model to be robust against minor disruptions in neuron activity, indirectly improving 

resistance to adversarial noise. 

Gradient regularization 

Gradient Regularization, or Input Gradient Penalty, directly addresses the sensitivity of the model’s output 

with respect to its input by penalizing large gradients [RD18]. By minimizing the sensitivity of the model’s 

predictions to changes in the input, this technique enforces smoother decision boundaries. The model is trained 

by adding a penalty term to the loss function, which minimizes the magnitude of the gradient of the output 

with respect to the input. This technique directly reduces the model’s sensitivity to small input perturbations, 

making it more robust to adversarial attacks that rely on exploiting these gradients. 

Randomized smoothing 

Randomized Smoothing is a technique that offers certified robustness against adversarial attacks [CRK19]. In 

randomized smoothing, Gaussian noise is added to the input, and the model’s prediction is averaged over 

several noisy input versions. This technique smooths the decision boundaries by making predictions less 

dependent on small perturbations in the input. 

4.7 Gradient masking or obfuscation 

Gradient masking and obfuscation methods aim to protect models by making the gradients—used by attackers 

to craft adversarial examples—less informative or inaccessible. By obscuring gradient information, these 

defences attempt to prevent attackers from successfully optimizing perturbations that can mislead the model 

into making incorrect predictions. 

Randomization methods introduce stochastic elements into the model’s architecture or preprocessing steps, 

causing the gradients to become noisy or “shattered”. For instance, adding random noise to the inputs or 

applying random transformations can make the gradient information unreliable [XWZ+17]. Stochastic 

activation functions, such as randomly dropping neurons during inference (like dropout during training), can 

also mask gradients [DAL+18]. This unpredictability in neuron activation patterns makes gradient estimation 

challenging for attackers. 

Utilizing saturating non-linearities is another strategy, where activation functions that saturate at extreme input 

values (like sigmoid or hyperbolic tangent functions) cause gradients to vanish [CDL+17]. When activation 

functions saturate, small changes in input lead to negligible changes in output, resulting in near-zero gradients 

that impede attackers from identifying effective perturbation directions. Additionally, some defences focus on 

detecting adversarial examples rather than preventing them. By adding a detection mechanism that flags inputs 

exhibiting abnormal characteristics or statistical deviations from the training data, models can reject or 

scrutinize potentially malicious inputs [MGF+17]. While not directly masking gradients, this approach adds 

an additional layer that can interfere with gradient-based attacks. 

Despite the variety of gradient masking and obfuscation techniques, research has shown that they often provide 

a false sense of security. In [ACW18], the authors demonstrate that many defences relying on these techniques 

can be circumvented. Attackers can exploit alternative methods, such as approximating non-differentiable 

components with differentiable ones during the backward pass, accounting for randomness by taking the 

expectation over random transformations applied by the defence or using gradient-free optimization methods 

like the Square Attack [ACF+20], explained in the Evasion Attacks section, which employs random search 

strategies to find adversarial examples without relying on gradient information. 

Gradient masking does not fundamentally resolve the issue of adversarial vulnerability; it merely obscures the 

pathways that attackers might use. As attackers develop more sophisticated methods, relying solely on gradient 

masking becomes insufficient for robust protection. It is recommended to adopt more effective defence 

strategies, such as adversarial training. Additionally, certified defences [RSL18] offer mathematical guarantees 
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on a model’s robustness within certain perturbation bounds, providing stronger assurance against adversarial 

attacks. 

4.8 Robust XAI 

As we have discussed in Section 3.3, XAI methods aim to make machine learning models more interpretable 

and trustworthy, and they have currently become a necessary component in ML systems. Therefore, it is 

inevitable that the XAI models will be shipped out with the ML products in the near future more frequently. 

Thus, the robustness of the XAI methods is becoming equally important in the arena of cybersecurity as much 

as the security of the ML models. AI approaches are typically divided into pre-hoc, which integrate 

interpretability during development/data processing, in-model methods, which use models that are inherently 

interpretable (like linear models or decision trees), and post-hoc methods, which generate explanations for 

complex models after training using tools like Shapley Additive Explanations (SHAP) and Local Interpretable 

Model-Agnostic Explanations (LIME). 

Post-hoc methods for XAI are new components added to ML-based systems. This new component can 

complement the prediction of ML models, weighing heavily on the actions of systems and humans that depend 

on the ML model. However, they can be also converted to a new attack vector by malicious agents. In some 

cases, the explanation itself is more important than the prediction. Thus, the removal of the XAI component is 

also not an option. This is the case for AI used in applications having a societal impact, where predictions must 

be fair and unbiased. This is also the case for security applications like detection and response (D&R), where 

an explanation is used to counter and recover from detected attacks using appropriate measures. 

A central challenge posed by post-hoc methods is that their explanations can sometimes diverge from the actual 

predictions of the ML models they interpret, creating a potential vulnerability for attack. Leveraging 

explainability through transparency could address this issue, as explanations that derive directly from the ML 

model’s decision process are typically more aligned with its predictions. For an adversarial attack to succeed 

in these cases, both the ML model and the explanation process must be compromised, a more complex task 

[KL20]. Moreover, using transparency-based XAI methods provides a degree of protection for explanations, 

as they can be partially shielded by existing adversarial defences that secure the ML model. Currently, security 

measures against adversarial ML attacks are more advanced than those for protecting XAI methods. However, 

when transparency-based methods are not feasible, choosing robust post-hoc explanation techniques can 

enhance resilience against attacks. For example, empirical studies [SHJ+20] indicate that SHAP demonstrates 

greater robustness than LIME in concealing biased or unfair outcomes. 

Another way to enhance the robustness of explainable methods is to incorporate additional techniques that 

mitigate any anticipated attack types. One notable attack type is known as “scaffolding attacks” [SHJ+20], 

which are designed to deceive even well-established security measures, often going unnoticed by auditors and 

other stakeholders who rely on model explanations. These attacks enable model creators to embed subtle 

biases, introduce backdoors for unauthorized access, or intentionally compromise system integrity, all while 

avoiding detection during audits. Once the attack method is brought to light, any party (e.g.: security auditors) 

that is anticipating such an attack can be equipped with specialized tools to identify them [3]. By detecting and 

addressing scaffolded models early in the security screening process, auditors can limit potential long-term 

damage, enhancing both the resilience and trustworthiness of explainable systems. 

The robustness and trustworthiness of XAI can also be enhanced using prediction confidence metrics, which 

not only make AI/ML systems explainable and interpretable but also provide actionable insights into the 

reliability of the model’s predictions. Prediction confidence offers a mechanism to evaluate the trustworthiness 

of explanations. For instance, an Intrusion Detection System (IDS) employing post-hoc XAI methods like 

SHAP or LIME could use the confidence metric to refine the explanations generated, ensuring they align 

closely with the underlying data distribution and model performance. This integration mitigates the risk of 

misleading explanations, which can arise when models struggle to generalize to unseen attack vectors or when 

the explanations themselves are targeted by adversarial attacks. 

Thus, incorporating confidence metrics into XAI-enhanced frameworks not only provides robustness against 

adversarial threats but also ensures trust among human operators, enabling more informed and effective 

decision-making in cybersecurity environments. Thus, confidence is not merely an auxiliary measure; it is a 

foundational element that strengthens the synergy between trustworthy AI and secure, reliable intrusion 

detection. 
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It is also a possibility that XAI can be used as a tool for improving adversarial privacy violation attacks such 

as membership inference, model extraction and model poisoning. Since XAI inherently provides additional 

information about a model, an attacker can exploit the added information to improve the effectiveness of those 

attacks. The robustness of the applied XAI methods can be increased in this case by following the below steps: 

• Controlled Explainability: Define the minimum explainability level needed to achieve the intended 

goal, ensuring that the selected XAI method meets these requirements without revealing unnecessary 

information. Transparency levels should vary across stakeholders, with model creators needing the 

highest level and endpoint developers requiring lower levels of interpretability. 

• Restricted Access: Limit access to model explanations to only essential parties, such as auditors or 

regulatory bodies, and consider sealing or encrypting explanations for secure access when necessary. 

A restricted-access approach minimizes the risk of attackers gaining sensitive information. 

• Delayed Availability: Delays the release of model explanations relative to the model’s decisions, 

slowing down potential adversarial attacks that rely on iterative access to explanations. This approach 

does not hinder model utility in most cases, though exceptions may exist for stakeholders in real-time 

monitoring environments. 

5 6G key technical enablers and selected cases 

This section presents several examples of possible threats that could compromise the proper functioning of the 

different 6G enablers presented in ROBUST-6G deliverable D2.1 [ROB24-D21]. Specifically, examples of 

threats in the physical layer, in the AI/ML modules and in federated learning that could cause a major impact 

on the key 6G technologies. The assessment and prevention of these threats in the various selected cases have 

been described in Sections 3 and 4 above. 

5.1 Reconfigurable Intelligent Surfaces 

Reconfigurable Intelligent Surfaces (RIS), also referred to as Intelligent Reflecting Surfaces (IRS) or Large 

Intelligent Surfaces (LIS), represent a transformative technology poised to revolutionize the wireless 

communication landscape, particularly in the context of 6G. RIS consists of an array of reflecting elements 

capable of reconfiguring incident signals, allowing proactive modification of the wireless environment. This 

capability addresses numerous challenges in modern wireless networks, making RIS a focal point for 

advancing wireless communication systems. At its core, an RIS is a two-dimensional material structure with 

programmable macroscopic physical properties. Its most defining feature lies in its reconfigurable 

electromagnetic (EM) wave response, enabling unprecedented control over wireless channels. Unlike 

traditional wireless communication networks, where channel behavior is predominantly dictated by the 

environment, RIS-aided networks empower dynamic control over the channels between transmitters and 

receivers. This results in enhanced signal strength at terminal devices and provides a new degree of freedom 

in system design. [LLM+21] 

Research has demonstrated the ability of RIS to significantly enhance wireless network performance, including 

optimized channel gains, improved Quality of Service (QoS), extended coverage range, and reduced energy 

consumption. These benefits align closely with the overarching goals of 6G, which include achieving ultra-

reliable low-latency communication (URLLC), massive machine-type communication (mMTC), and energy-

efficient operation. By embedding RIS within 6G architectures, operators can create adaptable, intelligent 

networks capable of meeting the stringent demands of diverse applications such as immersive experiences, 

industrial automation, and AI-driven ecosystems. 

The use of AI/ML in RIS could be leveraged to achieve key optimization in its operation, in addition to being 

able to adapt to changing environmental conditions in an intelligent way. Therefore, RIS can be envisaged as 

a promising avenue for enhancing security through Physical Layer Security (PLS) schemes [KRC+24]. Despite 

this, as we discussed in ROBUST-6G deliverable D2.1 [ROB24-D21], RIS integration also introduces several 

potential threats and attacks that require thorough evaluation and implementation of effective mitigation 

strategies. This subsection describes how the AI/ML techniques that could be used in RIS can be affected by 

the different threats developed in Section 3, as well as the application of countermeasures (mitigation 

mechanisms) of Section 4 to address the aforementioned threats. 

Among the various threats shown in the threat matrix on RIS, see Table 5-2 in [ROB24-D21], spoofing poses 

a major threat to the authenticity of the communication, as the attacker can manipulate the channel to deceive 
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the receiver. To detect this type of anomaly, AI/ML algorithms can be used during the training phase to 

generate models based on historical channel data, thus being able to identify unusual patterns that may indicate 

identity theft attempts [ZLJ+21]. As a possible mitigation, real-time adjustments could be made to the RIS 

settings to improve the integrity of the attacked signal. 

In addition to spoofing attacks, the integration of AI/ML techniques into the RIS security framework delivers 

a proactive approach to threat prevention, including the other attack types discussed in [ROB24-D21], such as 

tampering, repudiation, information disclosure and Denial of Service (DoS) threats. AI/ML techniques are 

crucial to strengthening the security of RIS-enabled networks, ensuring robust and reliable communication in 

an increasingly complex threat landscape [LLY+23]. Tampering can be covered by AI/ML techniques to boost 

RIS modulation by dynamically adjusting parameters based on detected anomalies. Reinforcement learning, 

for example, can strengthen eavesdropping encryption and Secure Key Generation (SKG) processes, thereby 

increasing resilience against tampering [JSL+21].  

Eavesdropping is a critical threat in wireless systems due to the broadcast nature of signals. Illegal 

Reconfigurable Intelligent Surfaces (IRIS), deployed by attackers, increase this risk by passively enhancing 

signal leakage and enabling interference attacks. IRIS can optimize phase shifts to increase intercepted signal 

power, degrading the secrecy rate, or amplify interference to disrupt legitimate users, severely impacting signal 

quality [WLZ+22]. AI/ML techniques can counter these threats by generating adaptive artificial noise and 

detecting subtle signal deviations through unsupervised learning. These approaches are essential for enhancing 

the security of RIS-assisted wireless systems and ensuring robust protection of 6G networks. 

In RIS technologies, different approaches can be used for the assessment of the above-mentioned threats, which 

are able to address both attack simulation and system resilience to potential vulnerabilities [SKM+24]. Attack 

simulation assessment is one of the most used approaches to test how RIS can respond in a non-operational 

controlled environment. In this way, weaknesses in the security architecture can be identified. Among the 

different types of attacks examined in Section 3, the three variants of adversarial threats (Section 3.1), model 

inversion attacks (Section 3.2.1) and extraction attacks (Section 3.2.4) are the threats that could pose the 

greatest impact and criticality on RIS. 

In the case of poisoning attacks, for example, malicious data could be introduced into the RIS Controller 

(RISC) and then observe how it affects the wireless signal configuration. In this way, it could be evaluated 

whether the system is able to identify and isolate malicious data. And in the case of model extraction attacks, 

the simulation for evaluation would have to focus on trying to extract or replicate the RIS control model, 

observing whether the RIS system has any mechanisms to protect the internal structure of the model or limit 

access [KKA+24]. 

Finally, several prevention mechanisms could be implemented to mitigate the threats identified in RIS, mainly 

to guarantee data integrity and confidentiality, as well as the robustness and operational security of the RIS 

technology. All these prevention mechanisms also depend on the type of threat identified [PL23]. In poisoning 

attacks, data filtering and real-time validation techniques could be enforced to detect and remove anomalous 

or manipulated data before it influences the RISC model. And approaches to evasion attacks can follow an 

adversarial training approach (Section 4.1) in which threat detection models are exposed to simulated attacks 

during training. This will increase robustness and the ability to identify attack patterns in real time. 

Other types of prevention mechanisms that could be used, as in any other critical system to be safeguarded, 

would be the implementation of technologies such as blockchain (also proposed in Section 4.3) to secure, for 

example, the data supply chain and verify the authenticity of the data in the RIS system. Or the use of advanced 

information encryption techniques such as homomorphic encryption or secure computing techniques to ensure 

that data can be processed without being exposed. This would allow us to be better protected against data 

reconstruction attacks. 

Last but not least, the differential privacy mechanisms outlined in Section 4.2 can also be implemented to 

reduce the amount of information that can be extracted from RIS models, limiting the risk of sensitive data 

reconstruction discussed in Section 3.2.4.2. And in the case of RIS in federated learning contexts, the 

application of these differential and federated privacy techniques can protect the data exchanged within the 

federation and make it difficult to infer it. 

5.2 AI/ML for RF sensing and localization 

6G wireless networks are demanded to integrate localization and sensing capabilities for both estimating the 

position of active devices, using radio channel characteristics, and detecting passive objects in the environment. 
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These services will improve network resource management, while AI/ML methods will complement signal 

processing to improve accuracy in detecting people, activities, and objects. These concepts are developed in 

more detail below. 

Sensing and localization with communication networks  

Next-generation wireless networks are called to support an increasing number of devices and heterogeneous 

applications. As part of the growing functionalities of next-generation wireless networks (including 6G), 

capabilities, including device localization and sensing of surroundings, are being introduced. These services 

provide additional benefits to users and improve network resource management [WQW+23, SVB+22].  

Localization and sensing services differ in their objective and how information is collected [BYK+23]. 

Localization is the estimation of the position of an active wireless device, i.e., transmitting radio signals, from 

radio channel features such as the received signal power, the signal time of flight, and the angles of arrival and 

departure of the signal [BAB+23]. For example, a base station (BS) can estimate the distance and the relative 

angle of a connected user equipment (UE) from the signal received in the uplink. 

On the other hand, sensing refers to obtaining information about passive objects in the environment, e.g., 

people, furniture, cars, and road signs. In this case, the fixed and moving objects act as reflectors, diffractors, 

and scatterers for the signals. In turn, information about the range, velocity, and angular position, for example, 

is obtained by analysing how the environment modifies radio signals exchanged by two wireless devices. 

Localization and sensing can be obtained through mono-static, bi-static, or multi-static systems [LCM+22]. In 

the first case, the system acts similarly to a radar device, where the transmitter and the receiver are co-located, 

and sensing parameters are extracted by the signals reflected to the device. Bi-static sensing is a more typical 

setup in communication networks because it relies on the typical communication setup composed of a 

transmitter and a receiver that are not co-located. In multi-static sensing, multiple receivers collect the multiple 

signal copies generated by multi-path propagation from a transmitter device and process this data for 

localization and sensing. 

Localization and sensing methodologies 

As described above, localization and sensing target two complementary tasks: while the first considers active 

targets, the second aims to obtain information about passive devices. However, processing methodologies to 

obtain the sensing parameters are common. The systems use as sensing primitive the channel estimate 

computed by the communication devices through training fields in the data packets. The time, frequency, and 

space diversity in the channel estimates allow for obtaining information about the range, velocity, and angular 

position of the passive or active target. In addition to estimating these quantities, the objective of sensing may 

be to obtain other information from the surroundings, such as identifying the people present in the environment 

or recognizing the activity they are performing. Standard signal processing techniques may not suffice to 

address the sensing task in these cases. Hence, several AI/ML approaches have been proposed in the literature 

for the different frequency bands [MCC+23, SVB+22, HSD+22]. 

AI/ML for localization and sensing  

AI/ML algorithms have become increasingly used for sensing and localization purposes when signal 

processing methods cannot address the task or reach good accuracy. An overview of AI/ML’s role in 

integrating sensing functionalities within wireless networks is presented in [DA23]. Signal processing 

techniques for sensing can be referred to as model-based approaches as they rely on n models of radio. AI/ML 

approaches are instead model-free approaches as the algorithms are data-driven and learn how to address the 

task from examples used during the training process [MCC+23]. The use of AI/ML for localization and sensing 

ranges from low-level feature extraction and pattern discovery to object detection and recognition, location 

tracking and prediction, environmental mapping, and cooperative localization [DBB+21]. For localization, ML 

is usually used to implement fingerprinting-based algorithms that obtain an estimate of the location of the 

target by analysing the characteristics of radio propagation and finding the best match with the fingerprints 

learned during training. For sensing, ML is extensively used in indoor environments for people monitoring, 

e.g., for activity recognition and person identification. 

Attacks on ML models for sensing 

The attacks on learning systems for environmental monitoring and localisation mainly focus on perturbing the 

input of the learning model, i.e., the channel estimate. This leads the learning algorithm to have a wrong 
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perception of the surroundings and, in turn, provides a wrong output for the sensing task. The strongest damage 

is achieved when the adversary has access to the learning architecture used for sensing. This attack strategy is 

referred to as a white-box attack and entails crafting a malicious perturbation for the input that maximises the 

loss. Another possible approach, called transfer attack, considers a network that has been trained on a different 

configuration of sensing nodes, i.e., different positions for the base station and the terminals. These two 

approaches require the adversary to also access the real channel estimate used by the sensing system to perform 

the task. If such information is not available, the adversary can craft some adversarial sequences based on the 

knowledge of the environment. An overview of these attack approaches applied to the localisation task and 

their evaluation in cellular networks is presented in [HGA+24]. Other adversarial attacks on learning-based 

localisation are presented in [MSB+23].  

A black-box impersonating attack is presented in [LCY+24]. The attack is based on the transmission of a 

malicious channel estimate that when processed by the learning model is recognized as associated with another 

user in the network. Other false data injection attacks targeting gesture and activity recognition are presented 

in [SQG+23] and in [MZL+23]. On the other hand, in [LXD+24], the authors present a different approach 

where the adversary modifies the pilot symbols used for channel estimation. This leads the victim device to 

estimate the wireless channel wrongly. Using such a wrong estimate as input for the learning model generates 

wrong sensing results. 

Several of the techniques reviewed in Section 4 could be applied to address the above threats, which could be 

implemented together to create a more secure environment for the ML models used. These include the use of 

adversarial training to improve robustness, by injecting adversarial samples during the training phase, as well 

as input anomaly detection techniques to identify unusual patterns in model inputs. 

5.3 Privacy and security for distributed learning 

Distributed learning will be a key enabler in 6G, as it will allow data to be processed and analysed directly at 

6G network nodes, reducing latency and improving energy efficiency by minimising the need to transfer large 

volumes of information to centralised data centres. Furthermore, it will also support privacy and security in 

6G environments, where the density of connected devices and data generation will be exponentially higher. 

In this context, distributed learning enables scalable, privacy-preserving model training by keeping data on 

local devices, but it introduces security and privacy challenges. Adversaries can exploit vulnerabilities in 

training, update transmission, and aggregation, with multiple entry points increasing risk. Limited resources 

in distributed systems heighten these vulnerabilities and are susceptible to various attack types outlined in 

[ROB24-D21] Section 3, that compromise both security and privacy [RJL+23]. Poisoning attacks involve 

adversaries degrading model quality by injecting malicious data in the distributed learning node or altering 

model parameters during the training phase, leading to biased or incorrect outputs. Considering the approaches 

like fully decentralised FL, the threat from poisoning is even higher as any entity can participate in the training 

process, without intervention from a central aggregator [CL24]. 

Evasion attacks [KSM+23] in distributed learning can cause misclassifications via adversarial noise. Privacy 

attacks consist of several methods: model inversion or data reconstruction attacks, where attackers attempt to 

eavesdrop the model parameters to reconstruct input data from model outputs [SSW+24b] by exploiting 

learned correlations; membership or property inference attacks [HZS+24], determining if specific data points 

or selected properties were part of the training set by analysing model responses; model extraction, replicating 

a model by inferring its parameters through access to its predictions; and functionality extraction, creating an 

imitation model by observing input-output pairs from the target model. Therefore, the adversaries can exploit 

different vulnerabilities within the distributed learning process. Hence, the need for robust defence 

mechanisms to protect data integrity and confidentiality exists in distributed learning mechanisms. 

To counter the various privacy and security threats in distributed learning, several defence and detection 

mechanisms in Section 4 can be employed, specifically tailored for distributed learning. Differential privacy 

introduces controlled noise to local individual client model updates or outputs, protecting individual data 

contributions while maintaining overall model utility. This technique limits the impact of any single data point 

on the final model, mitigating risks from membership inference attacks. Knowledge distillation transfers 

knowledge from a complex original client model to a simpler one, obscuring the relationship between training 

data and model outputs, without directly sharing the original client model. By not exposing the original model’s 

parameters directly, it reduces the risk of model inversion, inference and extraction attacks. 
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Gradient masking or obfuscation modifies the gradients shared during training to prevent adversaries from 

extracting sensitive information. Obfuscating gradients makes it more difficult for attackers to perform model 

inversion or extract private data from gradient information. Additionally, anomaly detection mechanisms at 

both input and output levels in distributed learning can be helpful in eliminating potentially adversarial clients 

from aggregation. Input anomaly detection monitors data for patterns indicative of adversarial manipulation 

or poisoning attempts in client training, to identify if an adversary attempts to inject any malicious data into 

the client model training. Output anomaly detection observes outputs from the client models before aggregation 

for irregularities that may signal an ongoing attack or model compromise [SSW+24b]. 

Combination of multiple techniques is also supporting in the timely identification of manipulated models or 

suspicious results due to adversarial influence. 

5.4 AI-as-a-Service framework 

AI-as-a-Service (AIaaS) is the delivery of artificial intelligence (AI) and machine learning (ML) capabilities 

through cloud platforms as a service, allowing users to access AI models, tools, and infrastructure without 

having to develop or manage these skills on their own. In a 6G network, AIaaS would empower operators, 

developers, and enterprises to harness AI technologies for various applications and services in a seamless, 

scalable, and efficient way. Therefore, it is vital to ensure that the AIaaS framework is well-protected against 

potential threats and malicious attacks. 

In [GTN+24], a comprehensive threat analysis of the AIaaS framework is conducted using STRIDE as the 

selected methodology, where potential security threats are identified in relation to the recognized assets, and 

corresponding mitigation strategies are proposed. The identified assets are data, model, environment and tool, 

and process where the data is the riskiest one. AIaaS often involves processing sensitive or personal data in 

the cloud, increasing the risk of data leakage and unauthorized access if proper data protection measures are 

not in place. The potential impact of a data breach is significant, leading to privacy violation and regulatory 

non-compliance (e.g. General Data Protection Regulation, GDPR). To mitigate this risk, it is crucial to 

anonymize or encrypt data both at rest and in transit and implement strong access controls. Another identified 

threat in [GTN+24] against AIaaS is adversarial attacks involving both evasion and poisoning attacks. In an 

evasion attack, the attacker can carefully craft inference input data to deceive the deployed models in the cloud 

into making incorrect predictions. These wrong predictions degrade the overall performance of the AIaaS 

system and compromise its integrity leading to financial loss, reputation damage, or even physical harm. To 

mitigate this type of attack, continuous testing of the AI model against adversarial inputs and apply techniques 

like adversarial training will be useful to strengthen the model's resilience at the cloud. 

Complementarily, in [TKG24], a defence mechanism to mitigate inference queries based black-box attacks 

during the inference phase of the AI/ML model is proposed. The model’s uncertainty estimations are quantified 

by the model owner during prediction time and this information is used to update the model weights in the 

highly uncertain cases, to minimize quantified uncertainty value, leading to more accurate predictions. 

Another vulnerability in AIaaS system is the exploitation of potential weaknesses in cloud providers. A 

malicious actor could replace a legitimate model with a poisoned one (inject false data into the training data), 

causing the model to perform in an unexpected manner leading to a loss of trust and reputation also financial 

loss. To detect such attacks, statistical methods such as Gaussian Mixture, or reconstruction-based methods 

such as autoencoders can be used by the cloud provider for input anomaly detection in the training data. In 

addition, an unexplained drop in model accuracy or performance can be considered as a sign of a poisoning 

attack and can be detected by comparing the model performance on a trusted validation set and real-world data 

to identify any anomalies in the predictions. 

Another well-known attack in AIaaS framework is the model inversion attack. The attacker aims to reconstruct 

sensitive information about the training data by submitting multiple queries to the AIaaS system and analysing 

the outputs predicted by the model deployed in the cloud. To prevent such attacks, differential privacy can be 

used by the cloud provider to add noise to the outputs generated by the model or the training process to make 

it harder for attacker to infer specific details about individual data in the training set. In addition, limiting the 

amount of information that the model exposes in its outputs can prevent attackers from gaining insight into the 

training data. 

Model extraction attack is also an important concern for cloud-deployed ML models, where the attacker aims 

to replicate the behaviour and functionality of the deployed model by querying the model and using the 

responses. The attacker can use the replicated model to provide a competing service which can lead to a loss 
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of market share for AIaaS provider. Limiting the number of queries a user can make within a certain period, 

and adding noise to the outputs of the model can reduce the attacker's ability to train a surrogate model. 

6 Conclusions 

We have provided in this deliverable a comprehensive analysis of the security threats affecting AI/ML models 

in the context of 6G networks. This analysis has been performed following the STRIDE methodology, which 

systematically categorizes threats into spoofing, tampering, repudiation, information disclosure, denial of 

service, and elevation of privilege. This systematic approach is introduced in Section 2 of this report allows 

identifying and assessing the potential impact of each threat on AI/ML systems. It has highlighted the need to 

strengthen security against adversarial attacks, which could manipulate training and prediction data, thus 

compromising the performance and reliability of AI applications, as well as different types of threats against 

privacy and explainability of AI/ML models. This in-depth analysis has been carried out in Section 3. 

Associated with the analysed threats, a complementary study on prevention and mitigation strategies to protect 

AI/ML systems from malicious exploitation, and thus ensure their secure deployment, has been carried out in 

Section 4. To this end, various methods to prevent threats to AI/ML models have been analysed, focusing on 

techniques such as adversarial training and differential privacy to secure AI/ML systems against adversarial 

attacks and data leakage. Other mitigation methods have been also highlighted, such as distributed training 

and model smoothing to improve robustness, as a key challenge for secure AI/ML deployments. In addition, 

knowledge distillation and explainable AI have also been examined as promising methods to improve security 

and interpretability while addressing challenges in federated environments. 

Finally, Section 5 explores several given scenarios and emerging technologies that are particularly vulnerable 

to the threats reviewed in the previous sections, and which require the implementation of effective mitigation 

strategies; threats to key 6G enablers like Reconfigurable Intelligent Surfaces (RIS), AI/ML for RF sensing 

and localization, and distributed learning. This study has also been conducted on a specific AI-as-a-Service 

(AIaaS) framework, which allows AI and ML capabilities to be accessed through cloud platforms. All these 

selected cases and key enablers have allowed us to verify how the different threats studied impact AI/ML, and 

how they could be remediated through the proposed mitigation methods.  
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