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Abstract 

This deliverable features the complete definition of the three use cases that will boost the decisions and 

developments of the technical drivers of ROBUST-6G concerning data management and governance, 

trustworthy and sustainable Artificial Intelligence (AI) techniques, zero-touch security management, 

and physical layer security. They will shape the proposed objectives for achieving robust security and 

trustworthiness in sixth generation (6G) networks. Along with the use cases and project objectives, a 

series of requirements are set out to serve as the basis for the design and development of ROBUST-6G 

components. Their fulfilment aims to build and present an initial architecture that facilitates seamless 

collaboration across multiple network domains while ensuring compliance with privacy regulations 

and tackling the complexities of cyber threats. Finally, a dataspace architecture is also detailed in this 

deliverable, which serves as a foundational element for the development of the project components to 

ensure that security and trustworthiness are embedded throughout the network infrastructure. 
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Executive Summary 

This deliverable describes the main findings and identification of the ROBUST-6G use cases aimed at ensuring 

the security and trustworthiness of the sixth generation (6G) network through the development of (i) integrated 

Artificial Intelligence (AI) / Machine Learning (ML)-driven solutions; (ii) a zero-touch security management 

solution to tackle multiple cyber-physical threats in Internet of Things (IoT) environments; (iii) a solution to 

guarantee physical layer security through AI/ML-driven technologies; and a (iv) Data Management Platform 

to enable and oversee the entire flow of data within the ROBUST-6G dataspace. 

The three use cases and associated scenarios for ROBUST-6G are the following: 

1. Use Case 1 “AI model trustworthiness evaluation for 6G distributed scenarios”, which emphasises the 

evaluation of AI/ML models in distributed 6G networks using Decentralized Federated Learning 

(DFL). It addresses key dimensions such as robustness, sustainability, explainability, and fairness 

while integrating physical layer security measures. 

2. Use Case 2 “Automatic threat detection and mitigation in 6G-enabled IoT environments”, primarily 

focuses on the automation of security management processes within 6G networks. It aims to develop 

mechanisms that enable real-time threat detection and response, leveraging the programmability and 

flexibility of 6G to enhance security orchestration. 

3. Use Case 3 “Security capabilities exposure with Network-Security-as-a-Service (NetSecaaS)”, which 

addresses the challenges of data governance in 6G environments, emphasising the need for effective 

data management strategies that ensure compliance with privacy regulations. 

Following a detailed description of the proposed use cases, and tightly aligned with them, a significant list of 

requirements that the subsequent initial architecture must comply with is enumerated: both functional and non-

functional requirements; technical requirements containing details about the technology stack or infrastructure; 

operational and business requirements about features that must be fulfilled from the point of view of the system 

stakeholders; and end user (customer) requirements of ROBUST-6G. This list of requirements is structured in 

different application domains with the aim of covering the main developments proposed in the project: data 

management and governance, trustworthy and sustainable AI techniques, zero-touch security management, 

and physical layer security. Also, an initial number of global requirements with cross-cutting conditions to be 

fulfilled are also described. 

The above is the entry point for the building and design of an initial architecture for the ROBUST-6G project, 

which meets the demanded requirements as well as considering the different use cases and scenarios proposed 

for its subsequent implementation. This initial architecture is designed to support the three use cases defined 

by providing a modular and flexible framework that integrates various technologies, including AI/ML-driven 

solutions, continuous monitoring, and effective data management capabilities, among others. In addition, this 

deliverable also introduces the concept of dataspace as a vital framework for data management in 6G networks 

to ensure data security, compliance, and integrity, addressing challenges in managing sensitive information. 

The associated modules making up the dataspace allow creation of a secure and efficient environment for data 

management, supporting privacy-preserving solutions across multiple domains. 
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1 Introduction 
The advent of sixth generation (6G) networks entails a pivotal step in the evolution of wireless communication, 

promising cutting-edge capabilities in connectivity, data processing, intelligent automation, security, and 

trustworthy Artificial Intelligence (AI) models. As global industries and critical systems increasingly rely on 

advanced digital infrastructures, 6G is poised to address emerging challenges that extend beyond conventional 

Key Performance Indicators (KPIs) such as high-speed connectivity, bandwidth, and throughput. In particular, 

novel Key Value Indicators (KVIs) [URB+21] are gaining prominence in forthcoming architecture designs so 

as to lay the foundation of 6G technologies. Specially, trustworthiness, resilience, and security are emerging 

as foundational pillars in the design and development of 6G-oriented solutions, shaping the future of 

applications across multiple administrative domains. 

To begin with, the trustworthiness of AI models in distributed environments such as cross-domain or Cloud 

Continuum scenarios presents a groundbreaking research area for 6G contributions. The use of Decentralized 

Federated Learning (DFL) techniques may offer a promising pathway for elaborating joint privacy-preserving 

AI models that can be trained in a distributed way. In this way, the need to address data privacy and distributed 

intelligence deployment is a dual demand to be tackled [KMA+21]. Furthermore, ensuring trustworthiness at 

the physical and sensing layer is another imperative challenge to secure the underlying infrastructure of 6G 

networks, necessitating advanced mechanisms to safeguard against adversarial cyber threats and maintain data 

integrity [MJC+21]. 

Second, as the proliferation of 6G-enabled Internet of Things (IoT) systems amplifies the complexity of 

network environments, the need for robust threat detection and mitigation strategies becomes paramount. In 

this vein, security orchestrators, acting as centralized or decentralized control systems, can leverage 6G’s 

advanced capabilities to enable real-time responses to cyber threats, thereby enhancing the resilience of IoT 

ecosystems [GYZ+21]. Likewise, new opportunities may emerge in the literature since 6G networks require 

the capacity of on-demand deciding the assets to be secured which may be deployed in several administrative 

domains or network segments. In this regard, the flexibility and programmability characteristics play a 

fundamental role. It will enable management and orchestration components to determine the most appropriate 

monitoring tools to fulfil the security requirements declared by users and find out potential threats happening 

in real time. On another hand, risk-averse resource management solutions may help security orchestrators to 

minimise the threats and privacy leaks, as embedding algorithms that evaluate potential risks could be 

introduced into orchestration activities. 

Finally, 6G networks also offer a unique opportunity to expose security capabilities through innovative 

frameworks such as Network-Security-as-a-Service (NetSecaaS). By integrating security functionalities 

directly into the network infrastructure [OD22], NetSecaaS may empower organisations to tailor their security 

strategies to meet dynamic threats, fostering a proactive approach to cyber defence. However, improving 

standardised Application Programming Interfaces (APIs) are developed to abstract security capabilities, 

thereby enabling application developers and enterprises to apply security policies without requiring deep 

network expertise. 

1.1 Motivation, objectives, and scope 

ROBUST-6G aims to contribute to the design and development of reliable and security AI-driven solutions 

for 6G networks by addressing critical challenges such as trustworthiness, security, and scalability. To achieve 

this aim, ROBUST-6G will analyse and integrate advanced technologies like DFL, explainable AI, zero-touch 

security management, continuous monitoring, threat detection and prediction, physical layer security, and data 

governance. 

Therefore, the objectives and scope of this deliverable are to pave the way with respect to forthcoming design 

and development activities to be carried out in the next technical Work Packages (WPs). One of the objectives 

of this document is to clearly determine what are the main use cases and scenarios that will prove ROBUST-

6G designs and deployments. For this reason, Deliverable 2.2 introduces three different use cases in which the 

main topics of the ROBUST-6G project are consequently covered: data management and governance, 

trustworthy and sustainable AI techniques, zero-touch security management, and physical layer security. 

Additionally, each use case proposes two or more scenarios in which the component and micro-services 

defined in the ROBUST-6G architecture can be tested. Linked to the UCs and the associated technical WPs, 

five domains (Global, Physical Layer, Distributed AI-driven Security, and Zero-touch Security Management) 
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group the agreed requirements that will be the basis for the design and development of our ROBUST-6G 

components. 

On another hand, considering all the previous information, high-level and functional architecture views are 

presented in this deliverable. The main objective is to offer a modular perspective on the technologies planned 

for development within the project, highlighting the system’s goal of achieving end-to-end, integrated security 

for the envisioned 6G networks. As well, the aforementioned main topics display further high-level and 

functional details to reflect how they go deeper into the initial design declared in the ROBUST-6G architecture 

while maintaining the principles and interactions already settled. Last but not least, objective of this deliverable 

is to contextualise the dataspace which is in turn divided into two modules: Data Fabric and Data Governance. 

ROBUST-6G dataspace boosts the power and role of intelligent data management in a distributed environment 

where several data sources may feed different types of data that can be correlated to obtain more for more 

sophisticated querying and data analysis via knowledge graphs and appropriate control of the data products. 

1.2 Document structure 

The document at hand is structured as follows. In Section 2, three main use cases, their scenarios, and 

stakeholders are thoroughly described to point out some of the principal pillars of the ROBUST-6G project, 

trustworthy AI models for decentralized environments, e.g., physical and sensing layers, automatic threat 

detection and mitigation in 6G IoT environments, and Network-Security-as-a-Service. Section 3 collects a set 

of (non-)functional, operational, and business requirements for five application domains. Afterward, Section 

4 presents ROBUST-6G architecture, high-level, functional, and deployment views, in which key modules, 

components, and services of our work packages are delineated. In addition, the utmost important interactions 

and communications between modules, components, and services can also be observed. Section 5 describes 

ROBUST-6G dataspace in charge of managing data flows to build a secure and efficient environment for data 

management across distributed domains. Finally, we summarise our conclusions in Section 6. 

2 Use cases 
This section offers an initial, but comprehensive presentation of the three Use Cases (UCs) that we initially 

defined in ROBUST-6G’s Description of Action (DoA), incorporating several application scenarios in one of 

them. For each UC and its potential scenarios, a general motivation and a high-level description of its main 

objectives, the list of stakeholders involved and their interaction with different high-level workflows, where 

possible, as well as a first set of expected KPIs and KVIs for each scenario are provided. It should be noted 

that the selection of the UCs was made taking into consideration the complementarity in the different technical 

aspects proposed in ROBUST-6G. 

2.1 AI model trustworthiness evaluation for 6G distributed scenarios 

The first UC presented below focuses on DFL for training AI and Machine Learning (ML) models, 

incorporating trust dimensions such as robustness, sustainability, explainability, and fairness, in addition to 

integrating Physical Layer Security (PLS) measures. Key results include AI/ML models that are robust to cyber 

threats, privacy-friendly and adaptable to dynamic 6G environments. 

2.1.1 Motivation and overall description 

The decentralized nature of forthcoming 6G networks presents cutting-edge challenges concerning the 

generation of shared AI/ML models while preserving privacy and fostering trust. These challenges arise from 

balancing the collaboration required for model training with the stringent demands for privacy and security. 

The essence of this problem lies in establishing robust mechanisms for trustworthy and efficient decentralized 

learning, which are pivotal to unlocking the potential of 6G. In this context, a 6G network or domain can be 

delineated as the collective networks falling within the administrative purview of a certain entity, 

encompassing all network nodes within its infrastructure. This definition underscores the complex, 

interconnected environment in which decentralized AI/ML model generation must operate, requiring 

sophisticated approaches to collaboration and security. Thus, the development of AI/ML models necessitates 

a paradigm that supports collaboration across diverse nodes within each domain while upholding stringent 

privacy standards. DFL) enables collaboration between different nodes by exchanging model updates rather 

than raw data, enabling the training of shared models in a secure and distributed manner. The generation of 

AI/ML models entails this collaborative effort, leveraging DFL to balance the need for privacy with the 
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efficiency of shared learning. Throughout the training process and upon the completion of model training, the 

trustworthiness of the models must be meticulously evaluated before their deployment on end devices for 

production purposes. This first UC of the ROBUST-6G project is focused on evaluating the performance and 

reliability of these shared and decentralized AI/ML models. This evaluation covers three critical dimensions: 

(i) the trustworthiness of the AI/ML models based on essential pillars, primarily model robustness, 

sustainability, explainability, and fairness; (ii) the environment and context in which the AI/ML models were 

generated, such as reputation relations between networks and domains, the use of secure channels for 

communications; and (iii) trustworthiness measures of the infrastructure layer, i.e., the physical and sensing 

layers, together with the proposed PLS-based mitigation of potential attacks. The first two aspects are clearly 

covered below in the first scenario of Section 2.1.4.1, while the third one will be addressed in more detail in 

the second scenario described in Section 2.1.4.2. Stakeholders definition, roles, and interactions. One of the 

keys to any UC is to identify and define the stakeholders involved, such as domain administrators and end 

users, and outline their roles—from contributing data to models, to evaluating the trustworthiness of these 

models. Furthermore, the document delineates the interactions between different nodes (cloud, edge, and 

extreme edge) which may occur horizontally or vertically, reflecting the decentralized nature of the model 

training process. In the context of developing trustworthy AI for DFL in 6G networks, it is crucial to clearly 

define the various stakeholders involved. These stakeholders play pivotal roles in ensuring that the AI systems 

are effective and adhere to ethics and security standards. Below, the key stakeholders in this UC are identified, 

each with specific responsibilities and expectations that contribute significantly to the overall success and 

trustworthiness of the AI models developed. Individuals or entities who manage a domain. A domain 

encompasses all network nodes under the administrative scope of an entity. Administrators are responsible for 

overseeing the AI/ML model training and trustworthiness evaluations within their respective domains. This 

stakeholder is represented by Telecom Operators, Internet Service Providers (ISPs), Data Center 

Administrators, etc. 

• AI Developers. They design and develop the algorithms for DFL models. They are tasked with 

integrating AI models into existing network structures and ensuring they perform optimally across 

different nodes. This stakeholder is represented by AI labs and AI research teams involved in the 

telecom network environments. 

• End Users. They are the primary beneficiaries of DFL in 6G networks. They rely on trustworthy AI 

models for decision-making and benefit from personalized services and enhanced data privacy. These 

end users can be individual or enterprise-level customers. 

• Federation Devices. These represent the operational stakeholders within the DFL ecosystem. These 

devices, including cloud, fog, edge, and extreme edge nodes, such as mobile base stations, cloud 

servers, smartphones, and other end-user devices or infrastructure computing systems, actively 

participate in training and sharing AI/ML model updates. Each device plays a crucial role in enabling 

the distributed learning process, contributing to developing and refining the final models while 

maintaining the decentralized architecture. 

• Regulatory bodies. These entities enforce standards and regulations that govern the ethical use of AI, 

data privacy, and security in Federated Learning (FL) environments, such as the European Data 

Protection Board (EDPB) that oversees compliance with the General Data Protection Regulation 

(GDPR), which directly impacts AI applications that process personal data, or the European 

Telecommunications Standards Institute (ETSI) which establishes standards for AI integration within 

telecom networks. 

Next, the classification of nodes is based on their roles within the framework, which defines the set of 

responsibilities and actions assigned to individuals or groups in the ecosystem. Each role is critical to managing 

the complex interactions and processes for developing and maintaining AI systems. 

• Model Contributor. Nodes (cloud, fog, edge, extreme edge) that participate in generating and sharing 

updates for AI/ML models. They train local models on their data without exposing it, contributing to 

the privacy-preserving aspect of FL. 

• Trust Evaluator. Both domain administrators and potentially automated systems that assess the 

AI/ML models on trust dimensions such as robustness, fairness, and explainability, using aggregated 

scores to determine overall trustworthiness. 

• Security and Privacy Monitor. These roles are dedicated to ensuring that the communication 

channels between nodes are secure and that data privacy is maintained throughout the learning process. 

This role could be assumed by stakeholders representing Domain and Network Administrators. 
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Regarding interactions, they refer to the dynamic processes and communications between various stakeholders 

and system components. These interactions are crucial for the synchronisation and functionality of the learning 

process across distributed networks. They encompass everything from data sharing and model updates to the 

evaluation of trustworthiness and security measures. Understanding these interactions is key to optimising the 

AI system’s performance and ensuring its reliability and integrity. 

• Model Sharing. Can be horizontal, where devices of the same level (e.g., cloud to cloud) share model 

updates, or vertical, involving different levels (e.g., cloud to extreme edge). This structure supports 

the decentralized nature of the learning process. 

• Trustworthiness Evaluation. Once the final models are trained, they are evaluated for trust 

dimensions. This includes not only the performance of the models but also the processes through which 

they were created and the reputation of the participating domains. 

• Reputation Assessment. Trustworthiness evaluations also incorporate assessments of the reputation 

relationships between nodes and domains. This is crucial in environments where collaboration is 

necessary but challenging due to the autonomous nature of each domain and potential security 

concerns. 

2.1.2 State-of-the-art for application in 6G networks 

Current solutions for AI trustworthiness evaluation are centred on evaluating the model and its configuration 

once it has been trained in a centralized manner, where data coming from the different nodes are joined together 

for processing or where each node generates its own model using local data [ZLQ+20]. However, these 

solutions are unsuitable for modern 6G scenarios due to the highly distributed network topologies, the large 

number of nodes, and stringent privacy requirements. Furthermore, 6G is expected to incorporate decentralized 

federated schemes where central entities play a minimal role, aligning with the shift toward distributed AI 

model generation. Trustworthiness evaluation of AI/ML models generated under the DFL paradigm is still an 

open challenge due to the particularities in these setups, such as the lack of knowledge of the training data, 

malicious node presence or node participation ratio [BM21]. In addition, nowadays, there is no integration 

between the trust in AI model performance and the trust between the domains or entities participating in the 

generation of these models. This is a key challenge for trustworthy 6G networks, as these two trust dimensions 

must be merged to have a complete view of the trustworthiness of the models before they are elevated into 

production deployment. 

Several solutions in the existing literature have already worked on frameworks for the trustworthiness 

evaluation of centralized AI/ML models. These frameworks calculate a score for the following pillars of trust: 

accountability, fairness, explainability, and robustness [WL24]. Typically, the evaluation process involves 

designated entities within the framework—such as trusted evaluation servers or model auditing tools—

calculating individual scores for each pillar. These scores are then aggregated, often on a central evaluation 

node or server, to produce a final trustworthiness score for the model. As part of the development of the first 

scenario of this UC, detailed below, the expected framework will be extended to support new trust metrics and 

pillars arising from the usage of DFL to generate AI/ML models. 

In the same perspective, other solutions in the literature worked on approaches to evaluate the reputation 

relationships between different domains in the Fifth Generation (5G) and Beyond Fifth Generation (B5G) 

networks [JSG+22]. In this regard, end users may consider historical data and monitoring data provided by 

trustworthy data repositories to assess the reputation of other domains. Reputation approaches should be 

capable of handling both an entity reputation with which the updated models are to be shared and the reputation 

of the domain per se. Therefore, the reputation of a given entity/node affects all overall domains to which it 

belongs. Furthermore, these approaches need to consider security and privacy aspects, for instance, the 

involvement of the node in adversary activities or the ability of the node to maintain proper security measures 

against external fraudulent activity. Thereby, current approaches will be updated and enhanced to integrate 

them into the AI model trustworthiness evaluation lifecycle, using the reputation of the domains as one of the 

inputs in the process. 

2.1.3 Use case detailed description 

This UC describes a scenario where multiple domains, each managing distinct network nodes (including cloud, 

edge, and extreme edge nodes), collaborate to develop shared AI/ML models. The objective is to harness DFL 

techniques to ensure the privacy, security, and trustworthiness of these AI models across highly distributed 

networks. 
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Domains operate autonomously but share the objective of training common AI models without centralising 

data. This approach preserves user privacy and data integrity. Each domain contributes to the model training 

by processing data locally at its nodes and sharing model updates with peers instead of raw data. This 

collaborative training involves both horizontal interactions (e.g., cloud-to-cloud) and vertical interactions 

involving different levels (e.g., cloud-to-edge). Key challenges include safeguarding data privacy, maintaining 

integrity, and ensuring model reliability and fairness despite limited direct data access. The distributed network 

nature also raises coordination and synchronisation complexities, increasing vulnerability to security threats 

such as data breaches or adversarial attacks on AI models. 

The interactions in this UC are diverse. Nodes exchange updates to AI models, promoting collaborative yet 

private training. Models are evaluated on various metrics to determine deployment readiness. Security 

measures are continuously monitored and updated to protect data and model integrity. 

The primary goal is to develop a framework where AI models are effective in their predictive capabilities and 

exemplary in their ethical, fair, and transparent use. This system embeds trust at every stage of the AI model 

lifecycle, from data collection to final deployment, ensuring models meet the complex needs of 6G networks. 

Figure 2-1 outlines a comprehensive process flow for implementing AI model trustworthiness evaluation for 

6G distributed scenarios. This flow includes detailed steps and stakeholder interactions that are essential for 

maintaining the integrity and trustworthiness of AI systems. The sequence of steps begins with the initiation 

of FL operations and covers the iterative cycles of model training, sharing, and refinement. It also incorporates 

crucial evaluations of model trustworthiness and regulatory compliance, culminating in the integration of user 

feedback and final model deployment. Each phase is designed to ensure collaborative engagement among all 

stakeholders, from network administrators to end users, thereby facilitating a robust framework for AI 

deployment in decentralized networks. This structured process not only addresses the technical complexities 

associated with 6G technologies but also ensures that the AI systems deployed are both effective and ethically 

sound. The steps identified in this process are: 

1. Initialization of FL Process: Domain and Network Administrators launch the FL operations, 

coordinating with AI Developers to deploy algorithms across the network. 

2. FL Cycle: 

• Local Model Training: Federation Nodes at the cloud, edge, and extreme edge independently 

train local models using their specific datasets. 

• Model Sharing: Nodes share their AI/ML model updates with others, both horizontally among 

similar level nodes (e.g., cloud to cloud) and vertically between different levels (e.g., cloud to 

extreme edge). 

• Reputation Assessment: Domain and Network Administrators evaluate the inter-node 

reputation based on data shared during the model updates, aiding in the detection of any 

potential issues related to node reliability. 

• Partial Trust Assessment: Trust Evaluators conduct intermediate assessments of the models 

on trust dimensions such as robustness and fairness using the performance data provided 

during the cycle. This helps in making ongoing adjustments before the final model 

aggregation. 

• (Aggregated) Model Refinement: Nodes collaboratively refine an aggregated model through 

collective learning, monitored by Network Administrators for integrity and efficiency. 

3. Trustworthiness Evaluation: After the FL cycles are complete, Trust Evaluators assess the final 

aggregated models on comprehensive trust dimensions, including explainability, and provide final 

trustworthiness scores. 

4. (Regulatory) Compliance and Certification: Regulatory Bodies review and certify the processes and 

models according to legal and ethical standards, ensuring compliance is maintained throughout the 

learning process. 

5. Final Reputation and Trust Assessment: Domain and Network Administrators conduct a final 

assessment of the reputation and performance of the participating domains and nodes. This assessment, 

coupled with the trust evaluations, guides future FL initiatives and collaborations. 

6. Feedback Integration and Deployment: End Users provide feedback on the models’ effectiveness, 

which is integrated by Domain and Network Administrators before final model deployment across the 

network. Effectiveness can be measured in terms of performance, Quality of Service (QoS), 

trustworthiness, etc. This feedback may also be shared with Regulatory Bodies to inform and refine 

compliance standards based on real-world user experiences. If the results are not satisfactory, this step 
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can trigger the relaunch of the entire process, ensuring the models are optimized and aligned with both 

user needs and regulatory requirements. 

Each step and cycle are critical for maintaining the integrity, effectiveness, and trustworthiness of AI systems 

in a decentralized 6G environment. This structured approach ensures that all stakeholders are continuously 

engaged, and that the system adapts to new information and challenges collaboratively. 

 

Figure 2-1: Use Case 1 flow diagram 

Successful implementation will result in AI systems that are robust against threats, compliant with privacy 

standards, and efficient in the decentralized, dynamic 6G environment. This will enable new AI-driven 

applications in industries like healthcare, automotive, and public safety, offering more responsive, adaptive, 

and personalised solutions. 

2.1.4 Scenarios 

The two scenarios that make up this first UC are outlined below. The first scenario of Section 2.1.4.1 develops 

a DFL framework that emphasizes privacy, trustworthiness, and model robustness, taking advantage of the 

collaboration of the federation nodes. On the other hand, the second scenario of Section 2.1.4.2 focuses on 

reliability and resilience at the physical and sensing layers, using AI models to improve authentication, secret 

key agreements and threat detection through probabilistic measures and physical layer data integration. 

2.1.4.1 Decentralized federated learning for joint privacy-preserving AI/ML model training 

The main objective of this scenario is the design of a fully DFL framework to enable AI trustworthiness 

assessment in highly distributed network topologies. This framework steers the generation of AI models within 

federated schemes in which central entities such as servers are bypassed, as opposed to current centralized 

solutions that are not well suited to state-of-the-art distributed 6G scenarios. This scenario also seeks to assess 

the trustworthiness of AI/ML models following a DFL approach, deployed in the framework mentioned above, 

by analysing fundamental pillars such as accountability, fairness, explainability, and robustness, together with 

key aspects of FL such as privacy. In addition, this first scenario also aims to explore how the performance of 
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local AI/ML models can be improved if participants are able to weight, or even discriminate, model updates 

from other entities and networks based on past behaviour, i.e., pursuing a reputation-based trust approach. 

Figure 2-2 showcases an example diagram for assessing the trustworthiness of AI models in a fully distributed 

and decentralized 6G scenario. 

 

Figure 2-2: AI model trustworthiness evaluation diagram for 6G distributed scenarios 

As depicted in Figure 2-2, different domains or networks collaborate to generate shared AI/ML models in a 

reliable and privacy-preserving manner. Consider that a network can be viewed as a given domain under the 

administrative scope of a certain entity, which encompasses all network nodes present in its infrastructure. 

Devices involved from different networks collaborate to generate numerous AI/ML models, and then the 

domain and network administrators compute the trust scores—different per domain—based on the model 

performance, the FL process and the reputation between the entities taking part in the process. 

To generate the AI/ML models, the cloud, fog, edge, and extreme edge nodes of each network share the updates 

of the AI/ML models with the nodes of the other networks, training the shared models using a DFL approach. 

In each domain, nodes can directly interact with other domains or follow a hierarchical setup, where designated 

nodes act as proxies between domains. During the training process, and once the final model(s) has been 

trained, the AI/ML trustworthiness is assessed before deploying them on end devices. 

Each network will then evaluate the final model, as well as the process through which it was generated. At this 

point, aspects of AI trustworthiness are considered: model robustness, explainability, fairness, accountability, 

and privacy, among others. In addition, other aspects related to the environment are examined in which the 

models were generated, such as reputation-related inter-network relationships as well as the use of secure 

communication channels for communications. 

In this specific scenario, a given number of KPIs can be targeted to assess the performance and effectiveness 

of using a DFL approach, with the aim of fostering privacy preservation in AI/ML model building. Among 

these KPIs we can find: 

• Reliability: Achieve a trustworthiness score of 80% or higher for each pillar (such as robustness, 

fairness, explainability, and accountability) assessing the holistic performance of DFL models. The 

score represents an aggregated evaluation across these pillars, with defined weights and calculation 

methods outlined earlier in the framework. 

• Model Accuracy: Achieve an improvement in AI/ML accuracy of 5% or more compared with local 

training, on average, after considering the trust of entities and domains (networks) sharing their model 

updates. 

• DFL Robustness: Guarantee that the DFL AI model has a minimum robustness score of 85% against 

adversarial attacks, measured in terms of Attack Success Rate or Cross-Lipschitz Extreme Value for 

nEtwork Robustness (CLEVER) score, which aim to subvert the proper operational functioning of the 

DFL framework. 
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2.1.4.2 Physical and sensing layer trustworthiness and resilience 

This scenario aims at considering a new dimension provided by ROBUST-6G that incorporates trustworthiness 

measures from the infrastructure layer, specifically the physical and sensing layers. The information coming 

from the physical layer are, obtained from: 

• Sensors on autonomous agents. 

• Embedded Radio Frequency (RF) signatures in transmitted signals. 

• Engineered RF fingerprints using distributed Multi-Input Multi-Output (dMIMO). 

• Migrating RF Fingerprints between base stations. 

• Other data, such as agents’ positions. 

From such measurements we aim at build mechanisms for security, in particular for authentication and secret 

key agreement. About authentication, by collecting several measurements from the environment and possibly 

controlling the environment itself (e.g., configuring Reflective Intelligent Surfaces–RIS) we aim at deciding if 

a message is coming from the legitimate transmitter or from an impersonating attacker. Such a decision is 

made by an artificial intelligent model that can also be shared among multiple users. The output is a score of 

authenticity which can been seen as a probabilistic measure. Also in this scenario, the interpretation of 

measures and their fusion with information coming from different layers will benefit from suitably trained AI 

models. 

About secret key authentication we aim instead at obtaining a secret key among devices where the randomness 

of the key comes from the measurement of the shared channel at the physical layer. Also in this case, to obtain 

the secret key, AI models that have been properly trained are exploited at the devices. The transmission over 

the physical channel can also be controlled with beamformers in Multi-Input Multi-Output (MIMO) systems 

and RISs. Such controls can be used to improve the privacy and the overall trustworthiness of 6G networks. 

This scenario will exploit information coming from the physical layer as well as the partial control of the 

physical layer itself to improve the security and trustfulness of 6G networks. The following KPIs highlight the 

key objectives for measuring reliability and resilience in the physical and sensing layers: 

• Obtain an accuracy of the authentication mechanism of more than 90% in typical cellular scenarios. 

• Obtain a key agreement rate of more than 99% before reconciliation mechanisms are used in Secret 

Key Agreement (SKA), in typical cellular scenarios. 

• Model Accuracy: Achieve an improvement in AI/ML accuracy of 5% or more compared with local 

training for threat detection using PLS input. 

• Accuracy: Achieve an 80% accuracy in detection of threats using RF fingerprinting solutions. 

2.2 Automatic threat detection and mitigation in 6G-enabled IoT 

environments 

This second UC explores threat detection and mitigation in 6G-enabled IoT environments, focusing on three 

specific scenarios inherent to small and medium-sized office environments, smart buildings and smart 

agriculture, respectively. The goal is to demonstrate how advanced closed-loop security mechanisms and AI-

driven processes can address proactive, reactive, and predictive security needs, ensuring a resilient IoT 

ecosystem. 

2.2.1 Motivation and overall description 

In modern 6G networks, the increase in device connectivity generates a consistent rise in network traffic, which 

results in a new challenge to consider. To report some examples of these challenges, it is enough to think of 

common activities such as bandwidth usage optimization, latency-sensitive services management or QoS 

maintenance across applications like IoT. Lastly, yet significantly, maintaining security as the first line of 

defence and implementing protections is crucial since, in addition to legitimate requests, a significant 

percentage of fraudulent requests with numerous threats come together. Among the most famous cyber threats, 

it is worth mentioning Distributed Denial of Service (DDoS), cryptojacking, data breaches and unauthorized 

access attempts. On the other side, protection mechanisms such as AI-driven threat detection, encryption 

protocols and network isolation (slicing). 

Concurrently, IoT is a fast-moving frontier. Numerous sensors are ready to help employees and companies 

with a wide range of everyday duties. However, the adoption of such utilities needs to consider the potential 
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hazards they generate as well. In these regards, malicious actors may try to exploit vulnerabilities in IoT 

infrastructures, which could result in large financial losses but also physical safety risks, operational 

disruptions, and compromised system reliability. 

The following scenarios, described in detail in Section 2.2.4, focus on threat detection and mitigation in 6G-

enabled IoT environments. These environments, as the name suggests, contain numerous sensors publishing 

data measurements into a shared network. The interconnection of a large amount of data, generated by 

combining network and sensor data information with a certain logic, facilitates the disclosure of new valuable 

pieces of information through a well-defined process known as data fusion and analysis. This process begins 

with the data collection, continues with preprocessing, integration, and analysis and concludes with the 

generation of new valuable insights. In industrial environments, companies adopt this strategy to gain new 

knowledge for their production process aiming at reducing their operational costs, increasing efficiency and 

improving the overall system performance. One standardized method on how to approach these improvements 

is through the concept of the closed-loop. 

The Closed-Loop approach is a fundamental method that facilitates the identification and resolution of several 

problems. It works as a continuous cycle of the following four functions: 

1. Observation: Data from networks and sensors are constantly checked. Network data such as system 

logs, sensor logs, user activities are fundamental for understanding if the target environment is working 

as expected. At the same time, sensor measurements provide additional valuable information about 

the environmental factors such as temperature, humidity, noise, and light. 

2. Analysis: Data, especially in large volumes, does not provide value on its own. A deeper analysis of 

data (time, source, destination, actual meaning) is a difficult but necessary task. This function aims to 

discover possible threats or troubles in comparison to the ideal system lifecycle behaviour. This 

analysis may be executed by static processes, or as suggested by modern approaches, with the help of 

AI/ML solutions. 

3. Decision: After the analysis identifies a threat, the decision step defines the most suitable response 

plan for addressing the problem. Decisions are taken based on predefined policies. The policies, or 

rules, aim at selecting the best actions to mitigate the identified problem. For example, if suspicious 

traffic is detected, then the decision step may suggest blocking the source following the predefined 

static rule. Furthermore, in more advanced systems, dynamic rules could be generated through AI-

based analysis (e.g., adaptive response to emerging threats). Finally, it is important to underline once 

more the importance of the connection between the analysis and decision steps. The second, in fact, 

strictly relies on the intelligence actions derived from the analysis, which allows triggering the most 

effective policy to mitigate the identified threat. 

4. Action: Finally, the chain of the closed loop terminates with the execution of an action aimed at 

solving the discovered problem. In brief, the action is the translation of the previous phases in a 

concrete execution command in the target environment. In IoT environments, examples of actions 

include blocking of suspicious traffic, isolating of compromised system, and notification to final users 

or system administrators about security vulnerabilities. 

The scenarios and the ways in which different stakeholders and functionalities interact with the ROBUST-6G 

platform will be explained in depth in the following sections. A preview of the stakeholders’ roles and their 

contributions to the overall functionality and security of the platform is shown in Figure 2-3 which provides a 

visual depiction of the platform’s components and their interactions with the IoT management features. 

Figure 2-3 is composed mainly of five elementary blocks. The Zero-touch Security Management is the entry 

point of the system receiving requests from an external consumer and translating them in different steps. Once 

a new request is received the Security Management module requires some logic from the Trustworthy AI 

Services Layer for analysing the continuously monitored data provided by the Data Management Platform. 

This analysis, mainly AI/ML-driven, helps detecting the presence of anomalies. 

Upon anomaly identification, the Decision step defines the resolution plan for mitigating them. Finally, the 

security management module enforces the action executing them in the target environment to erase the 

previously discovered anomalies. It is important to note, that in this idea of flexible and configurable closed 

loop, the function steps are preconfigured by different entities, but in the end, are executed by a security 

application which may stay even in the target infrastructure itself. 
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Figure 2-3: ROBUST-6G components interacting with the external world 

Security automation provides significant value to stakeholders by reducing manual intervention. For Small and 

Medium Enterprises (SMEs), this approach offers competitive costs for implementing and maintaining robust 

security. Additionally, a flexible approach like this allows updating at runtime the closed loop functions, able 

to address last-minute changes. 

2.2.2 Stakeholders definition, roles, and interactions 

From the previous section, it is easy to identify key stakeholders interested in using such a platform. These 

stakeholders include users, SMEs, and Telco operators. This involvement lies mainly in the need for secure, 

efficient, and trustworthy IoT environments. 

When referring to common users, it is possible to imagine people who manage their target environments, 

mainly composed of networks and IoT devices, such as smart homes or smart buildings using the ROBUST-

6G platform. Nowadays, common users adjust settings, check device status, and receive alerts about possible 

security issues directly through the platform’s interface. For instance, common users could be alerted to 

unauthorized access attempts or environment anomalies, enabling automatic or confirmative actions to solve 

the problem. In the scenarios proposed in the following sections, there is a deeper explanation of the interaction 

between common users and the platform. 

Another example of stakeholders is SMEs. These businesses may use the ROBUST-6G platform to monitor 

device performance, improve operational efficiency, and reduce security threats in their IoT ecosystems. SMEs 

can operate in different sectors, including manufacturing, healthcare, and technology but they all have similar 

needs. For example, in a manufacturing setting, an attacker could exploit sensor vulnerabilities to manipulate 

production line outputs, resulting in product defects, material waste and generally in financial losses. To avoid 

such losses, it is important to apply security mechanisms that monitor and discover as early as possible such 

threats proposing a way to mitigate them. These kinds of examples are reported more in detail under the 

scenarios described in detail in Section 2.2.5. 

In conclusion, iterating the previously defined concepts over bigger realities, telco operators may be considered 

as ROBUST-6G platform’s stakeholders. Telecommunication operators provide infrastructure support, 

reliable network connectivity, data transmission and security standards to different platforms. Their 

participation is essential to preserve the trustworthiness and integrity of the communication routes. 

Furthermore, telco operators may interact with other stakeholders, such as businesses and end-users, to identify 

and address security issues in the access network or in the core network that may put device connectivity and 

network infrastructure at risk. For example, Telco Operators can detect unusual traffic reducible to DDoS 

attacks and can work with businesses to isolate the infected device or networks, to execute a contingency plan. 
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2.2.3 State-of-the-art for application in 6G networks 

To design and develop a robust platform against threats and vulnerabilities in IoT contexts, cutting-edge 

technologies considering device characteristics must be incorporated. IoT devices operate with limited 

resources (energy, computational) which require lightweight security solutions. Hardware-based solutions, 

such as Key Agreement Protocols location-based or Physical RF fingerprinting functions, provide a secure 

path that can ensure device integrity and secure key storage. Similarly, lightweight cryptography has been 

designed to secure communications and data storage without exhausting device resources, making it suitable 

for IoT environments. This section aims to analyse and investigate previous researchers’ solutions in the IoT 

field. 

Networks and devices, present a wide range of well-known vulnerabilities, including weak authentication 

mechanisms, insecure communication channels, and obsolete encryption standards which expose IoT 

ecosystem to cyber-physical attacks. Taxonomies of these threats classify attacks into categories such as Denial 

of Service (DoS), Man-in-the-Middle (MITM), data tampering, and unauthorized access. For instance, weak 

encryption protocols may allow attackers to intercept and manipulate sensitive data, while insecure device 

configurations can provide entry points for unauthorized users. These vulnerabilities are related not only to 

IoT devices but also to automation applications and third-party applications such as IoT management 

platforms. Existing research studies provide hints for well-known threats and taxonomies related to smart home 

environments, and the entire IoT ecosystem, underlining the wide range of cyber-physical attacks [MHE+16, 

HLB+18, CZD23, BKT+22]. 

When dealing with 6G-enabled IoT environments other aspects may be taken into consideration for the correct 

design of a secure platform. The use of Deep Learning (DL) techniques for cyber-attack detection in IoT 

networks has been explored in recent studies like [JOR+23] and [GSS23]. DL algorithms may make a 

difference in the analysis step of a closed loop because they improve detection capabilities compared to 

traditional algorithms based on threshold or static feature analysis. For example, while traditional static 

algorithms rely on manual rule definition, DL models autonomously learn patterns from large datasets, 

improving the accuracy and making dynamic the anomaly detection. Furthermore, [KAK+23] developed a 

hybrid DL model combining Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) 

to detect IoT-specific attacks, achieving significant improvements in accuracy and false-positive rates. 

Similarly, [MKP+22] introduced a FL-based Intrusion Detection Systems (IDS) framework that protects data 

privacy while leveraging distributed DL models to enhance IoT security. 

Another critical threat in IoT environments is cryptojacking, where attackers exploit the computational 

resources of IoT devices to mine cryptocurrencies. This attack type is particularly detrimental in resource-

constrained IoT ecosystems, as it can drastically degrade device performance, increase energy consumption, 

and shorten device lifespans. Countermeasures against cryptojacking often involve anomaly detection 

methods, where DL-based systems can identify unusual patterns in resource usage and network behaviour 

indicative of mining activities. For example, [TAU22] proposed a lightweight DL-based model tailored for 

IoT devices to detect cryptojacking attacks with high accuracy and low computational overhead. 

To summarise, there exist many studies on IoT security attacks in cyber-physical environments. Hardware-

based solutions and lightweight cryptographic techniques provide robust security while maintaining efficiency. 

At the same time, DL solutions increase the ability to detect and respond to advanced threats, including 

cryptojacking and other sophisticated cyber-attacks. These studies may be considered as a valid background 

for the design and successive implementation of an efficient and secure ROBUST-6G platform with zero-touch 

security management against multiple cyber-physical threats in IoT environments. 

2.2.4 Use case detailed description 

This UC delves into the prediction, detection and mitigation of threats in IoT environments. It mainly analyses 

three scenarios which focus on providing proactive, reactive, and predictive security automation. Proactive 

security is the initial configuration necessary for setting up the target environment such that it is responsive 

and compliant with security mechanisms during its runtime. Reactive and predictive security instead considers 

all the aspects that follow during the runtime flow which may lead to the detection (in case it occurred) or 

prediction (in case it will occur) of threats. In addition, they also consider the relative mitigation steps. More 

details and workflows are described in Section 4.4.5. 

Moreover, since the complexity of the problem is high, the use of well-known techniques may be efficient in 

searching for a solution. In these scenarios, in fact, it is planned to highlight the use of programmable closed-
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loop functions. For the technical aspects related to the closed-loops, it may be beneficial to inspect deliverable 

D4.1, which elaborates more on this. 

In the next section, including three subsections, we examine three different scenarios, with increased details. 

In all scenarios, the presence of IoT is in evidence, since the aim of the UC is to combine the meaningful 

information provided by the sensors spread across the environments and the network data. In particular, the 

first scenario describes a small company managed to reduce unnecessary energy costs caused by a 

compromised heating system thanks to advanced techniques that combine sensors and network data. The 

second scenario explores the device manipulation for a scope different than those for which they were designed 

from the production. For example, a compromised smart light can be used by an attacker for crypto mining 

purposes instead of illuminating a room. The third scenario, which is the last and most enhanced one, describes 

the relevant consequences of the compromised sensor causing a chain of reactions that might contaminate 

other external system of a different field. Fundamentally, the UC delves on the evil intent of altering devices 

to cause economic harm or gaining advantages from the fraudulent usage of IoT devices. 

In the context of threat detection and mitigation in 6G-enabled IoT environments, it is important to define 

several KPIs. Among the different KPIs, the considered ones during the implementation of the proposed UC 

are: 

• Detection Accuracy: With a target accuracy of 95%, it is expressed as the percentage of correctly 

identified threats (expressed as the ratio between true positives, false positives or true negatives and 

false negatives) among all the threats detected by the system. 

• Detection Time: It is expressed as the amount of time that passes between the injection of an anomaly 

and its detection. In general, this is strongly related to the scenario complexity. Our target, compatible 

with the scenario, is of a maximum time of 2 min. 

• Mitigation Accuracy: With a target accuracy of 95%, this is the percentage of proposed actions that 

are effectively carried out and leads the target environment to a correct behaviour mitigating the 

previously detected anomaly. 

• Mitigation Velocity: Measured in terms of the number of closed loop function configurations needed 

to carry out mitigation actions. The valid target is the execution of the mitigation actions within a 

threshold lower or equals of three closed loops. 

• Mitigation Time: The amount of time that intercourse between the problem detection and the full 

implementation of the corrective countermeasures. The goal time in this indicator is fewer than 10 

minutes with additional consideration based on the scenario complexity. 

The proposed KPIs are very important because with quantifiable values they indicate the efficiency of the 

proposed platform. In fact, it is very important to understand and measure how quickly, still accurately, the 

system can detect and mitigate threats. This is also a way to measure and compare different detection and 

mitigation strategies. 

2.2.5 Scenarios 

The following scenarios describe anomalies that UC2 aims to detect and mitigate, all set in a smart IoT 

environment, i.e., office, farm, home, where the communication is 5G/6G wireless. Such communication can 

be managed by a Telco operator, which offers ROBUST-6G security services for verticals (e.g., the company 

which owns the office in scenario 1. Nonetheless, the characteristics of the target environment i.e., standalone 

IoT, make it suitable to consider, per each scenario, a dedicated 5G/6G NPN (non-public network). 

2.2.5.1 Device violation to cause an economic harm (a) 

This scenario explores the world of small to medium-sized office environments, where there is potential 

security issues associated with the integration of IoT devices managed through a centralized IoT platform. An 

example is reported in Figure 2-4 depicting a standard office equipped with IoT devices (such as gateways, 

electricity meters, and heaters) managed together via a unique IoT platform. The possibility for bad actors to 

take advantage of the weaknesses of the devices and cause financial harm becomes real in this environment. 

For instance, it is easy to imagine a scenario in which a malevolent attacker obtains unapproved access to the 

IoT platform and makes an apparently benign command, such as “turn on” the office heater. 

The platform request seems acceptable at first, but it raises concerns if it is being made on a non-working day. 

This is the core of the problem: the action accomplishes nothing useful for the company, instead it produces a 

waste of energy and causes financial loss that could have been avoided. However, the consequences may be 
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worse than energy waste such as equipment (servers, routers) damage due to the high temperature. 

Additionally, overheating could also damage the supply chains affecting the whole the whole company. Such 

cascading effects highlight the importance of a security platform and its efficiency in discovering and 

mitigating threats. 

The described scenario is composed of a “single closed-loop” consisting of the well-known steps of collection, 

analysis, decision, and execution. At the bottom of Figure 2-4, the first step of collection is illustrated by device 

measurement monitoring including temperature readings, and network traffic. Through this continuous 

monitoring, and with the logic of an analysis step, any anomalies or unusual patterns are immediately identified 

guaranteeing a fast identification of possible threats. For example, unusual patterns are discovered mixing the 

high-temperature value in a room and the logs of the “turn on” command in the heating system. After the 

analysis, which could be threshold or AI-driven, the decision identifies the best remediation plan with 

necessary countermeasures to execute. These countermeasures could include putting the malicious actor on a 

blacklist, executing system shutdown commands, or releasing a software upgrade to fix vulnerabilities. 

 

Figure 2-4: Device violation to cause an economic harm (a) 

2.2.5.2 Fraudulent usage of device resources 

This scenario leaves the floor to a smart building, where the presence of smart equipment creates a new channel 

for criminal activity. Imagine a hacker breaking into the system taking control of smart devices and then using 

their processing power for illegal activities like cryptocurrency mining (refer to Figure 2-5). This situation is 

tricky because the attack is hidden in the background. The compromised devices seem to work properly since 

they may be switched off and are not giving any alarm of being compromised. On the other side, a deeper 

analysis of the network-generated data helps in discovering the presence of the anomaly since the mining 

process may lead to intensive CPU consumption and network traffic. 

The “two closed loops” at the centre of this storyline cooperate to identify and neutralise the cryptojacking 

threat. In the first loop, IoT device measurements are continuously monitored ensuring patterns deviations 

result in alarms or extra action to apply. The second loop starts by analysing network traffic to identify device 

behaviour anomalies. In this second case, the action execute is not explorative as in the first loop but is 

resolutive (e.g., blacklisting attacker or device/IoT platform reset). 

The people living in Smart Buildings depend on these devices for daily activities and their comfort. 

Additionally, network managers are relevant actors in this scenario keeping an eye on the infrastructure and 

protecting the integrity of the network itself. This enforces once more the need for a powerful system able to 

identify threats and define the most suitable remediation plan. Overall, the KPIs defined in Section 2.2.4, fit 

well in this scenario. Fast detection of compromised devices using unauthorised resources, and a quick reaction 

for threat identification and mitigation are fundamental criteria of validation for measuring the effectiveness 

of the proposed security platform. 
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Figure 2-5: Fraudulent usage of device resources 

2.2.5.3 Device violation to cause an economic harm (b) 

The last scenario lies in the world of smart agriculture, where the attack surface exposure is quite vast. In this 

scenario, the financial damage from cyber-attacks could be more substantial and environmental aspects as 

waste of raw materials like water or fertilizers, need to be considered as well. This scenario investigates the 

influence of adjacent smart fields, exchanging data like temperature and humidity when one field becomes 

compromised. Vital resources like water, temperature and humidity are essentials for the correct lifecycle of 

plants. This evinces once more the importance of an efficient and secure mechanism to avoid damage from 

threat attacks. 

The scenario depicted in Figure 2-6, reports the case where an attacker exploits sensor vulnerabilities in one 

field and manipulates the measurement data. This manipulation can cause cascading damage in the adjacent 

fields if they are based on automatic actuators, such as irrigators or heating systems, that depend on the 

information transmitted from the compromised sensors. To provide a more realistic example, suppose that a 

certain wheat requires a fixed percentage of humidity and a constant high temperature for growing in optimal 

conditions. By attacking a small (and weak) portion of sensors in the field and transmitting false values of 

temperature and humidity, an automatic irrigation/heating system based on such values can act incorrectly 

leading to wheat death and consequent significant financial losses. 

The security solution proposed by ROBUST-6G implements several closed loops (intra and extra field) that 

deploy specific agents for cross-checking the correctness of the sensor values using as ground through external 

services like Open Weather Map. However, because sensors usually operate in low-power mode and transmit 

infrequently, alternative methods like RF fingerprint variations may be considered to detect attacks. In addition 

to data manipulation attacks, the system aims to address attacks concerning the physical layer like jamming 

attacks. In this case, appropriate solutions like frequency hopping, and beamforming using dMIMO can be 

applied to maintain reliable communications. 

Overall, this scenario contains a hierarchy of several closed loops. The interconnection of these closed loops 

requires coordination between several sites and the usage of an external data sources like meteorological 

services to verify sensor readings. 

To summarize, discovering anomalies requires real-time analysis of continuously monitored network traffic 

and sensor data as well as coordination across multiple local sites in case the data are combined as in FL. As 

mentioned in the previous scenario, among the expected KPIs it is important to underline also in this scenario 

the importance of the detection and mitigation time as well as the accuracy of the proposed mitigation action. 
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Figure 2-6: Device violation to cause an economic harm (b) 

2.3 Security capabilities exposure with Network-Security-as-a-Service 

(NetSecaaS) 

2.3.1 Motivation and overall description 

Network-as-a-Service (NaaS) represents a cutting-edge approach to delivering network services, allowing 

third-party applications to seamlessly interact with the network through intuitive APIs. This innovative 

paradigm is poised to revolutionise the landscape of 6G technology, empowering application developers to 

harness network capabilities without requiring specialised network expertise. Spearheaded by the Global 

System for Mobile Association (GSMA) Open Gateway initiative, a framework has been devised to facilitate 

secure, on-demand, and controlled access to network functionalities via a standardised set of APIs. These APIs, 

developed under the CAMARA open-source project [Cam23], serve as an abstraction layer, shielding users 

from the intricacies of telecommunications while streamlining the utilisation of network features by external 

entities, such as application developers and enterprises. 

This UC aims to expand the functionalities of the Open Gateway framework, enabling application developers 

and enterprises to seamlessly apply security policies by harnessing the enhanced capabilities of ROBUST-6G, 

termed as Network-Security-as-a-Service (NetSecaaS). The integration of ROBUST-6G with the Open 

Gateway framework, as illustrated in Figure 2-7, will be demonstrated. 

As depicted in Figure 2-7, within the Open Gateway’s northbound interface, novel APIs will be introduced to 

abstract security capabilities, building upon the ongoing development within the CAMARA project. These 

APIs will be meticulously crafted based on a thorough analysis of the security features offered by ROBUST-

6G. On the southbound interface, the Data Fabric component, developed as part of the Data Management 

Platform, which is outlined in more detail below, will serve as the intermediary between ROBUST-6G and the 

Open Gateway. The Data Fabric will facilitate the exchange of security data from ROBUST-6G and the 
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ingestion of intent declaration data from the Open Gateway. These data flows will delineate the interaction 

between the core of the Open Gateway and the ROBUST-6G platform, taking advantage of the AI capabilities 

provided by ROBUST-6G to support an intent-based approach (the service API definition adopts a developer-

friendly approach, abstracting away the inherent telco complexity found in network APIs). The Semantic 

transformation & adaptation block will be augmented to incorporate functionalities for mapping security 

intent declarations, modelled in CAMARA, into the data models employed by the ROBUST-6G Data Fabric. 

Simultaneously, the Workflow engine will be expanded to orchestrate interactions with ROBUST-6G, 

considering that a single data flow in the northbound interface may initiate multiple flows in the southbound 

interface. 

 

Figure 2-7: Integration of ROBUST-6G with Open Gateway 

To validate the integration of ROBUST-6G with the Open Gateway, this UC will present tailored scenarios 

aimed at external users lacking expertise in network security. These users may include school network 

administrators or mobile application developers unfamiliar with security protocols. Users will express high-

level security requirements, such as network encryption, layer 7-based filtering, policy scheduling, Internet 

Protocol Security (IPsec), parental control filtering, and key size considerations. Each scenario will be 

customised based on the resources of interest, ensuring that security measures align with user needs. 

Prior to any interaction, authentication and authorisation will be conducted to establish a private and secure 

connection. These scenarios will demonstrate how ROBUST-6G capabilities can effectively address diverse 

security needs, showcasing the seamless integration of advanced security measures into the network 

infrastructure. 

2.3.2 Stakeholders definition, roles, and interactions 

In this UC we can meet the following main users and stakeholders: 

• Application Developers: They are the primary users of the NaaS platform. Their role involves 

utilising the NaaS APIs provided by the Open Gateway framework to integrate network functionalities 

into their applications without needing extensive networks expertise. In this UC, they will also interact 

with the enhanced security capabilities offered by ROBUST-6G through the NetSecaaS component. 

• Enterprises: They are another key stakeholder group that benefits from NaaS and NetSecaaS. They 

can leverage these services to enhance the security posture of their networks and applications without 

the need for specialised security knowledge.  

• Network Administrators: They play a role in configuring and managing the Open Gateway 

framework within their organisation’s network infrastructure. They ensure that the integration with 

ROBUST-6G is seamless and that the security policies defined by application developers and 

enterprises are effectively implemented. For instance, network administrators can enable network 

encryption to ensure that all data traffic within the network is protected from unauthorized access, 

meeting the organization’s security and privacy requirements. 
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• End Users: Though they do not directly interact with the NaaS or NetSecaaS platforms, end users 

such as parents and general consumers benefit indirectly from the security features enabled by 

ROBUST-6G. For instance, parents may utilize applications that offer features like layer 7-based 

filtering for child safety, allowing parents to filter content or set usage policies without needing 

technical skills. 

• Regulatory Bodies: These entities ensure that ROBUST-6G’s security functionalities meet 

established standards and regulations. They play a key role in overseeing and guiding compliance with 

data protection, privacy, and encryption requirements. 

By aligning the roles and interactions of users/stakeholders with various functional components of the 

platform, the integration of ROBUST-6G with the Open Gateway framework for NetSecaaS can be effectively 

demonstrated and validated, showcasing its practical applicability and benefits to users with diverse skill sets. 

2.3.3 State-of-the-art for application in 6G networks 

2.3.3.1 Open Gateway 

NaaS represents a major shift where network operators can offer telecommunication capabilities for external 

use through APIs, enabling easier access to monitoring and configuration functions. These APIs empower 

telco networks to become programmable service platforms accessible to developers, Application Service 

Providers (ASPs), and enterprises, fostering seamless integration of applications with the network. 

As highlighted in the 6G-DATADRIVEN project [Dat24], the development of NaaS requires a collaborative 

effort, bringing together telco standard bodies, IT/cloud communities, industry associations, and open-source 

projects. This collaborative environment necessitates a clear delineation of responsibilities to prevent 

redundancy and fragmentation within the NaaS ecosystem. 

To address this need, GSMA launched the Open Gateway initiative at the Mobile World Congress (MWC) 

Barcelona in 2023. The mission of GSMA Open Gateway is twofold: i) to establish a governance framework 

for NaaS, covering both technical and business aspects; and ii) to secure operator commitment to launching 

universal NaaS API services by 2023. 

The Open Gateway initiative acknowledges the foundational work done by three key organisations: 

• Linux Foundation’s CAMARA: This organisation focuses on the exposure aspect, defining user-

friendly and open APIs for external consumption. CAMARA hosts and manages these APIs, ensuring 

they meet service and business needs while adhering to the Apache2.0 license. 

• GSMA: GSMA plays a pivotal role in defining the technical and business aspects of NaaS. It specifies 

how third party-facing APIs are supported by telco capabilities and establishes agreement templates 

for federation between operator networks and third parties. GSMA oversees technical and business 

workstreams through the Operator Platform Group (OPG), Operator Platform API Group (OPAG), 

Open Gateway Technical Stream (OGWTS), and Wholesale Agreement Services (WAS) groups. 

• TM Forum: TM Forum addresses the operational aspect, ensuring efficient management and 

operation of third party-facing APIs. It focuses on operational functionality provided by Operational 

Support Systems (OSS), Business Support Systems (BSS), and online charging systems under the 

Open Digital Architecture (ODA). 

Figure 2-8 depicts the contributions made by these organizations within the Open Gateway actor-role model. 

The Consumer, comprising developers, ASPs, Independent Software Vendors (ISVs), and Enterprise 

customers, generates code that interacts with the APIs. On the other hand, the Aggregator, which could be a 

hyperscaler/OTT (Over-The-Top) or an operator, acts as a sales representative for the Open Gateway 

community. Its effectiveness increases when it represents numerous operators. 

While each Operator establishes its own Terms and Conditions with the channels, alignment on product 

(standard APIs) and business framework (agreement templates, charging models) is essential. This synergy 

ensures a cohesive ecosystem where operators and channels operate seamlessly within predefined standards 

and agreements. 
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Figure 2-8: NaaS ecosystem, roles and usage of APIs 

On one hand, GSMA’s focus is squarely within the telecommunications domain, where it sets out the essential 

capabilities that all operators must provide for third-party access to ensure global reach and scalability. These 

essential capabilities, termed Open Gateway services, are prescribed by GSMA. Additionally, GSMA is tasked 

with prioritising and managing the roadmap of Open Gateway services, aligning them with market demands 

and the readiness of underlying technologies. Moreover, GSMA architects the platform that individual 

operators utilise to implement and expose these Open Gateway services. 

On the other hand, CAMARA and TM Forum concentrate on the APIs enabling programmatic access to Open 

Gateway services. These APIs are categorised into three groups: 

• Service APIs: These APIs facilitate the invocation of specific Open Gateway services tailored for 

various applications. Examples include Quality on Demand (QoD) API, Device Location API, and 

One-Time Password (OTP) validation API, each providing application-specific functionality. 

• Service Management APIs: These APIs enable management actions within Open Gateway services, 

such as ordering activation/deactivation of functionalities, monitoring, eligibility checks, and 

consumption verification. 

• Operate APIs: These APIs offer transversal functionality necessary to commercialise Open Gateway 

services, ensuring their operability and monetisation. Functions provided by Operate APIs include 

registration and onboarding of third parties, service fulfilment (e.g., provisioning, activation, 

modification), service assurance (e.g., incident management, performance monitoring), and billing. 

In terms of API ownership, CAMARA is responsible for defining, developing, testing, and maintaining Service 

and Service Management APIs, while TM Forum oversees Operate APIs. 

Regarding targeted consumers, CAMARA APIs are utilised by third parties in their applications either through 

aggregators (wholesale model) or via telco portals (retail model). Aggregators may develop and expose the 

additional Enriched APIs by adapting or combining CAMARA APIs. However, Operate APIs are not 

accessible to third parties; they are primarily used for integration with aggregators and portals. 

For further information on CAMARA APIs and Operate APIs, refer to the White Paper published in [Gsm23]. 

2.3.3.2 Architectural approaches 

The notion of capability exposure has garnered significant attention across various projects, especially 

following the introduction of public-private networks in the 3rd Generation Partnership Project (3GPP) Rel-

16 specification. This concept, also known as Public Network Integrated Non-Public Network (PNI-NPN), 

facilitates the provision and operation of End-to-End (E2E) services across multiple administrative domains, 

merging resources from both Public Land Mobile Networks (PLMNs) and private (on-premises) networks. 
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As already introduced in the 6G-CHRONOS project [Chr24], projects such as 5G-VINNI (ICT-17), 5Growth 

(ICT-19), 5G-CLARITY (ICT-20), and Hexa-X (ICT-52) have extensively explored capability exposure, each 

adopting distinct architectural approaches tailored to their specific scopes and targeted UCs. Notably, these 

projects have provided valuable insights into this domain, which serve as foundations for subsequent 

endeavours. 

For instance, the 5G-VINNI project focused on establishing an E2E 5G experimentation facility accessible to 

vertical industries, emphasising network slicing. This experimentation introduced a level-based framework for 

capability exposure, delineating four levels wherein tenants could access different operational capabilities from 

slice providers. Meanwhile, 5Growth aimed to validate 5G-enabled vertical applications using facilities like 

5G-VINNI, primarily opting for exposure level 1 to access the experimentation facility while leveraging their 

own on-premises infrastructure for sensitive systems. 

In a similar vein, the 5G-CLARITY project concentrated on designing a system offering diverse capabilities 

within private industrial network environments, defining the Mediation Function to regulate access control for 

consumers, including Mobile Network Operators (MNOs) and hyperscalers. This function served as a single-

entry point, ensuring granular access control over provider-managed resources. 

Furthermore, the Hexa-X project expanded on these concepts by introducing API Management Exposure, 

refining the solutions proposed by 5G-CLARITY. Notably, it addressed the dynamic nature of resources, 

particularly at the extreme edge of the computing continuum, and included software/application developers as 

tenants to integrate their Continuous Integration and Continuous Delivery/Deployment (CI/CD) pipelines into 

operators’ systems. 

Building upon the expertise garnered from these projects, the 6G-CHRONOS project as another significant 

endeavour, focusing exclusively on security-centric capability exposure. By leveraging an API gateway, it 

enhances integration with Operational Technology (OT) systems while offering improved control over access, 

QoS, network rate distribution, and protection against DDoS attacks. Additionally, the API gateway facilitates 

the monitoring of key metrics and logs, enabling early detection of communication flow anomalies. 

The integration of ROBUST-6G with the Open Gateway framework represents a significant advancement in 

the exposure of network security capabilities, particularly in the context of NetSecaaS. This innovative 

approach introduces advanced APIs into the Open Gateway’s northbound interface, effectively abstracting the 

sophisticated security functionalities of ROBUST-6G. These new APIs provide a streamlined, intuitive, and 

user-friendly interface, empowering application developers and enterprises to seamlessly access and deploy 

robust security features without requiring in-depth knowledge of complex network security protocols. This 

ease of access to advanced security differentiates ROBUST-6G from previous projects, offering a cutting-edge 

solution to meet modern security needs. 

2.3.4 Use case detailed description 

The UC 3 system architecture is pictured in Figure 2-9. This system architecture consists of the main following 

components: 

Integration Layer: It is a crucial component in the transition towards NetSecaaS, deploys a range of critical 

capabilities to mediate interactions between applications and telecommunications resources, ensuring seamless 

and secure integration between the network and applications. This layer comprises two main components: 

1. Exposure Gateway: This gateway provides all necessary capabilities to manage the interaction 

between the stakeholders, with a strong focus on security. This includes the publication and discovery 

of service APIs, access control (authentication and authorisation of applications), auditing, accounting, 

and logging. Through these functionalities, a secure and controlled environment for interactions 

between the network and applications is ensured. 

2. Transformation Function: This function plays a crucial role in maintaining and executing security 

mappings between developer-friendly service APIs and low-level security APIs. It aims to ensure that 

interactions between stakeholders and network security resources adhere to established security 

standards. This is achieved through the execution of workflows designed to enforce security policies, 

ensuring that communications are secure and reliable. 
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Figure 2-9: Use Case 3 system architecture 

Data Fabric: This platform serves as a self-contained data ecosystem, facilitating seamless data integration 

and manipulation according to the principles outlined in the data mesh paradigm [Deh22]. Its primary function 

is to organise data into source-aligned domains, equipped with intuitive mechanisms for efficiently 

constructing and disseminating data products across various consuming data domains. This platform is pivotal 

for data manipulation and is slated for the deployment explained in Section 5. 

Data Governance: Federated data governance mechanisms for guaranteeing high-quality data, privacy, and 

secure access to data as defined by owners of data domains. 

2.3.5 Main scenario description 

Use Case 3 focuses on demonstrating the integration of ROBUST-6G security capabilities into third-party 

applications via the Open Gateway framework. This integration will be showcased through a Proof of Concept 

(PoC) deployed in the 5TONIC lab [Ton24]. 

For this UC, the set of KPIs with which to evaluate the performance and effectiveness of the proposed system 

is determined below. 

• API call average latency of 300ms and max latency of 1s for external applications waiting for an 

answer from the Open Gateway API. 

• API CPU usage below 30% as part of the API responsiveness. 

• At least 50% of security capabilities implemented by ROBUST-6G are exposed through standard 

CAMARA APIs. 

To achieve these KPIs, the focus will be on streamlining processes and infrastructure to minimize latency and 

CPU usage. Collaboration with ROBUST-6G developers will ensure seamless integration of at least 50% of 

security capabilities into standard CAMARA APIs. Additionally, efforts will focus on optimizing resource 

usage, with a target of reducing overall consumption by 30%. 

The UC scenarios tailored to users lacking expertise in network security, such as school network administrators 

or mobile application developers, demonstrate the practical applicability of NetSecaaS. By addressing high-

level security requirements expressed by these users, the integration validates the seamless integration and 

effectiveness of advanced security measures provided by ROBUST-6G. 
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3 ROBUST-6G requirements 
This section contains the set of requirements that are defined for ROBUST-6G. The selection and description 

of the different requirements have been structured in different groups according to the functional and non-

functional capabilities expected in the different elements, which will be part of the ROBUST-6G architecture 

that is described in detail in Section 5. 

Specifically, the distribution of requirements has been done based on the four main application domains of the 

project, namely: Physical Layer Security, Data Management, AI-Driven Distributed Security and Zero Touch 

Security Management. In addition, as a first initial building block, a few Global Requirements are listed that 

are crosscutting to the four application domains mentioned above. 

In this section to define the system requirements, we adopt a compact tabular format to describe and report the 

requirements associated with any of the four application domains and the global requirements block. More 

specifically, Table 3-1 shows the structure of the requirements table. 

Table 3-1: Structure of the tables with requirements 

Req. 

ID 
Title Requirement description Type Origin 

Application Domain [X: Domain description] 

[RX.Y] [Group title] [Description] [Type] [Origin] 

Where the different attributes of the requirements are as follows: 

• [X: Domain description]: To facilitate the placement of each requirement, they are grouped into 

different application domains. Each domain is labelled by an X digit. 

• [RX.Y]: A unique identifier for each requirement, which can be used to reference them in a simpler 

way. It has the structure RX.Y, where X is the application domain number and Y is a sequential number 

of each requirement within the application domain, starting with 1. 

• [Group title]: A very short indicator of the main characteristic to which the requirement is associated, 

thus being able to quickly identify them among the different requirements of the application domain. 

• [Description]: It contains a brief, but complete, description of the requirement. For each, the level of 

the requirement is underlined with respect to its priority, indicating if it is mandatory, recommended 

or optional. To be more specific, we follow the keywords defined in RFC 2119 [Bra97] to indicate 

requirement levels: 

o MUST and SHALL mean a mandatory requirement that needs to be fulfilled. 

o SHOULD denotes a recommended requirement, which can be ignored with valid reasons in 

particular circumstances, but the full implications must be understood and carefully weighed 

before choosing a different course. 

• [Type]: Clear identification of the type of requirement, which can then be classified according to one 

or more of the types described below (together with its abbreviation): 

o Functional (Func): It is focused on service or system behaviours, activities, or task. It may 

also cover actions related to component management. 

o Non-Functional (NFunc): It is a qualitative feature such as performance, security, reliability, 

portability, usability, etc. 

o Technical (Tech): It contains details related to the technology stack, integration, infrastructure 

stuff, plans for scaling up (vertical) or down (horizontal), data formats, APIs, etc. 

o Operational (Oper): It refers to the deployment, monitoring, logging, maintenance activities, 

among others. It may address deployment strategies, environment specifications, continuous 

integration and delivery pipelines. 

o Business (Biz): Business characteristics of a proposed system from the viewpoint of the 

system’s stakeholders. 

o User (User): It is for potential consumers of ROBUST-6G. 

• [Origin]: Brief indication of the origin of the requirement. This may be the baseline of the project 

scope as stated in the DoA, a specific UC or a particular element within the ROBUST-6G system. 
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Starting with the requirements providing key functionalities for the ROBUST-6G system, a pool of global 

requirements is shown in Table 3-2. They are breaking them down later into specific functionalities with 

respect to the infrastructure supporting the ROBUST-6G system and all its operations, and finally detailing 

the qualitative features to be considered. That is, these functionalities are elaborated upon by outlining the 

qualitative attributes and performance characteristics that must be taken into consideration to ensure seamless 

integration and optimal performance of the system. 

Table 3-2: Overall system requirements for the ROBUST-6G system 

Req. 

ID 
Title Requirement description Type Origin 

Application Domain 0: GLOBAL REQUIREMENTS 

R0.1 Security 

capabilities 

The ROBUST-6G system must provide secure, privacy-preserving, 

reliable, resilient, accountable, trustworthy, and sustainable 

capabilities. 

Oper, 

NFunc, 

Biz 

DoA 

R0.2 Component 

interactions 

The ROBUST-6G Security Orchestrator should interact with the Data 

Management Platform and with the Physical Layer. 

Oper, 

Func 

DoA 

R0.3 Security 

capabilities 

The ROBUST-6G system must implement observation, analysis, 

detection of threats and reaction to threats, as well as alert generation. 

Oper, 

Func 

DoA 

R0.4 Type of 

closed-loop 

The ROBUST-6G system should support a programmable approach 

using dynamic closed-loops. 

Oper, 

Func 

DoA 

R0.5 6G layers The ROBUST-6G system should be able to work on the 6G system 

layers defined as service, network and infrastructure. 

Oper, 

Func, 

Biz 

DoA 

R0.6 Devices and 

environments 

The ROBUST-6G system must be able to monitor metrics of devices 

located in the Edge and Far-Edge environments, especially considering 

IoT devices. 

Tech, 

Func 

DoA, 

UC2 

R0.7 Threat 

detection 

The ROBUST-6G system should be able to detect incidents based on 

rule-based or AI-driven mechanisms. 

Oper, 

Func 

UC2, 

DoA 

R0.8 Type of 

closed-loop 

The ROBUST-6G system must handle reactive/predictive closed-loops 

automatically. 

Tech, 

Func 

DoA 

R0.9 Environments The ROBUST-6G system should strive to cover the cloud-edge 

continuum in a decentralized environment, accommodating the 

capabilities of current technologies. 

Oper, 

NFunc, 

Biz 

DoA 

R0.10 Virtualization The ROBUST-6G system should be virtualised. Tech, 

NFunc 

DoA 

R0.11 Security 

guarantees 

The ROBUST-6G system should ensure robust mechanisms of timing 

accuracy, fairness, and privacy in detection and mitigation processes. 

Oper, 

NFunc, 

Biz 

DoA, All 

UCs 

R0.12 Energy 

reduction 

The ROBUST-6G system should use an energy-aware approach to 

reduce the energy consumption. 

Tech, 

NFunc, 

Biz 

DoA 

R0.13 Privacy 

preservation 

The ROBUST-6G system shall deal with the privacy threats that could 

compromise its efficiency and functioning. Privacy-enhancing 

mechanisms should be an integral part of the overall platform. 

Tech, 

NFunc, 

Biz 

All UCs 

Table 3-3 shows the ROBUST-6G system requirements covering the main functional solutions to address 

security, privacy, authentication and anomaly detection at the physical layer of the infrastructure using 

advanced techniques such as ML, FL and PLS. 

This following list also adds some non-functional features focused on robustness, energy efficiency, privacy 

by design and attack mitigation, with the aim of optimising security in 6G networks. 
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Table 3-3: Requirements of the physical layer security in the ROBUST-6G system 

Req. 

ID 
Title Requirement description Type Origin 

Application Domain 1: PHYSICAL LAYER SECURITY 

R1.1 PHY security 

technologies 

The ROBUST-6G system must provide PLS based security schemes 

for 6G leveraging massive Multi-Input Multi-Output (mMIMO), RIS, 

dMIMO. 

Oper, 

Func 

DoA 

R1.2 Authentication 

and key 

agreement 

The ROBUST-6G system must provide low latency and low footprint 

authentication and key agreement protocols for the considered UCs. 

Oper, 

Func 

DoA, 

UC1 

R1.3 Fake base 

station 

identification 

The ROBUST-6G system must include a technique for the 

identification of false base stations. 

Oper, 

Func 

DoA 

R1.4 Localization 

privacy at the 

PHY 

The ROBUST-6G system must provide physical-layer based 

solutions for localization privacy. 

Oper, 

Func 

DoA 

R1.5 Trustworthy 

sensing at the 

PHY 

The ROBUST-6G system must provide physical-layer based 

solutions for trustworthy sensing. 

Oper, 

Func 

DoA 

R1.6 Anomaly 

detection at the 

PHY 

The ROBUST-6G system must provide physical-layer based 

solutions for generalized anomaly detection. 

Oper, 

Func 

DoA 

R1.7 Online attacker 

mitigation 

The ROBUST-6G system should include online attack and attacker 

identification and mitigation solutions with the help of online AI/ML 

learning mechanisms. 

Oper, 

Func 

DoA 

R1.8 Self-devices 

configuration 

The ROBUST-6G system should include ML solutions to learn how 

to configure the devices and what signals they should transmit to 

improve the confidentiality of transmissions using wiretap coding. 

Oper, 

Func 

DoA 

R1.9 Joint resource 

optimization 

and 

confidentiality 

The ROBUST-6G system should integrate confidentiality solutions 

with authentication and Secret Key Generation (SKG) to optimize the 

resources (in terms of energy consumption, but also communication 

overhead). 

Oper, 

Func 

DoA 

R1.10 Challenge 

response-based 

authentication 

The ROBUST-6G system should include solutions for authentication 

based on challenge-response approach operating at the PHY. 

Oper, 

Func 

DoA 

R1.11 Robust SKG 

techniques 

The ROBUST-6G system should include solutions for the SKG 

techniques robust against eavesdropping, injection (man-in-the-

middle), spoofing, and jamming. 

Oper, 

Func 

DoA 

R1.12 ML models 

protection 

The ROBUST-6G system should be robust against adversarial attacks 

against ML models used for PHY security. 

Oper, 

NFunc 

DoA 

R1.13 Privacy-

preserving 

The ROBUST-6G system should include privacy-preserving 

solutions while following principles such as privacy by design, local 

processing, and confidential computing, as well as anonymization, 

pseudonymization, obfuscation, and perturbation. 

Oper, 

NFunc 

DoA 

R1.14 Localization 

privacy-

preserving 

The ROBUST-6G system should include solutions for positioning 

privacy at the PHY using channel charting. 

Oper, 

Func 

DoA 

R1.15 Image 

forensics-based 

anomaly 

detection 

The ROBUST-6G system should include anomaly detection and 

restoration techniques inspired to image forensics based on an image 

of the environment obtained from both in-band and opportunity 

signals. 

Oper, 

Func 

DoA 
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R1.16 General cross-

layer anomaly 

detection 

The ROBUST-6G system should include generalized cross-layer 

anomaly detection techniques using continuous learning and 

unsupervised learning. 

Oper, 

Func 

DoA 

R1.17 Federated 

schemes 

The ROBUST-6G system should include federated solutions 

operating across several devices (both users and network 

components) for spatial correlations in detecting federated attacks 

(e.g., jamming covering an area or distributed attacks). 

Oper, 

Func 

DoA 

R1.18 Creation of 

PHY attack 

database 

The ROBUST-6G system should create a database of attacks at the 

physical layer (PHY) and sensing, generated by contributions from 

all partners participating in the PLS-related WP. 

Tech DoA 

R1.19 AI-enabled RF 

fingerprint 

library 

The ROBUST-6G system should develop an AI-enabled library of 

known RF fingerprints for different identified attacks. 

Oper, 

NFunc 

DoA 

R1.20 Threat 

localization 

using AoA and 

CSI 

The ROBUST-6G system should leverage the Angle of Arrival 

(AoA) and Channel State Information (CSI) to help ML models 

estimate the location of threats with less training data. 

Tech DoA 

R1.21 RF fingerprint 

migration for 

seamless IoT 

communication 

The ROBUST-6G system should support the adaptive migration of 

RF fingerprints among base stations in smart city environments to 

enable seamless and secure communication for IoT devices across 

different network nodes. 

Tech, 

Func 

DoA 

R1.22 Predictive 

models for RF 

fingerprint 

adaptation 

The ROBUST-6G system should develop predictive models to 

anticipate changes in RF fingerprints for low-power, infrequently 

communicating IoT sensors, enabling privacy-preserving and robust 

sensing. 

Tech, 

NFunc 

DoA 

Table 3-4 illustrates the requirements associated with data management in the ROBUST-6G system. This list 

of requirements is shown based on a first exposure related to APIs and security in external access to managed 

information, moving on to review data security and governance, including the necessary policies related to the 

management of sensitive data. This is followed by the collection and discovery of data from different sources 

for further data management, with the aim of establishing a robust infrastructure. Finally, the monitoring 

requirements are outlined to further maintain the advanced security capabilities of the system. 

Table 3-4: Data management requirements in the ROBUST-6G system 

Req. 

ID 
Title Requirement description Type Origin 

Application Domain 2: DATA MANAGEMENT 

R2.1 External access 

APIs 

The ROBUST-6G system shall define user-friendly APIs for 

external consumers to gain access to exposed capabilities. 

Tech, 

Func, 

Biz, 

User 

UC3 

R2.2 API Security The ROBUST-6G system shall provide secure API access for 

external consumers to the internals of transformation mapping 

between the service API and the network API. 

Tech, 

Func, 

Biz, 

User 

UC3 

R2.3 External APIs 

discovery 

The ROBUST-6G system shall have mechanisms to make these 

APIs discoverable to external consumers. 

Tech, 

Func, 

User 

UC3 

R2.4 External APIs The ROBUST-6G system should provide information to the outside 

through APIs designed for secure information transaction. 

Oper, 

Func 

DoA 

R2.5 Data access 

authorization 

The ROBUST-6G system shall allow access to data only to 

authorised data consumers based on the permissions defined by 

data owners. 

Tech, 

Func, 

User 

Dataspace 
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R2.6 Data access 

authentication 

The ROBUST-6G system shall include authentication mechanisms 

for accessing data. 

Tech, 

Func 

Dataspace 

R2.7 Data privacy 

labelling 

Defining data governance policies for data access shall account for 

sensitive data. 

Oper, 

NFunc, 

Biz 

Data 

Governance 

R2.8 Data 

provenance 

Tracing the data’s history throughout its life cycle should be 

necessary for instilling trust in the data. 

Tech, 

NFunc, 

Biz 

Data Fabric 

R2.9 Batch data 

sources 

The ROBUST-6G system must support mechanisms for collecting 

data in batch mode. 

Tech, 

Func 

Data Fabric 

R2.10 Streaming data 

sources 

The ROBUST-6G system must support mechanisms for collecting 

data from streaming data sources. 

Tech, 

Func 

Data Fabric 

R2.11 Data 

cataloguing 

Data consumers within ROBUST-6G should require a means to 

discover available data. 

Tech, 

Func, 

User 

Data 

Governance 

R2.12 Distributed data 

management 

Data management should be distributed to ensure scalability and 

adaptability in dynamic data exchange scenarios. 

Tech, 

NFunc, 

Biz 

Data Fabric 

R2.13 Data product 

ownership 

Data owners must be accountable for the data products created and 

exposed with the Data Fabric. 

Tech, 

NFunc 

Data Fabric 

 

R2.14 Heterogeneous 

data 

The ROBUST-6G system must enable the integration of 

heterogeneous data from data sources of different types. 

Oper, 

NFunc, 

Biz 

Data 

Fabric, 

PMP 

R2.15 Duplicity of the 

information 

The ROBUST-6G system shall avoid duplicity of information, 

making efficient use of resources. 

Func  

R2.16 Monitoring The ROBUST-6G system shall support the monitoring of network 

and security resources. 

Oper, 

Func 

UC3 

R2.17 Data 

monitoring 

The ROBUST-6G systems should collect data across different 

layers of the 6G system: service, network, and infrastructure. 

Oper, 

Func 

DoA, PMP 

R2.18 Data 

monitoring 

The ROBUST-6G system should integrate tailored monitoring 

agents for far-edge and edge monitoring for selective distribution of 

monitoring data. 

Oper, 

Func 

DoA, PMP 

R2.19 Aggregation 

and correlation 

The ROBUST-6G system should have a correlation mechanism for 

similar data collected from different environments. 

Tech, 

Func 

DoA 

R2.20 Extending 

capabilities 

The ROBUST-6G system should support new monitoring 

modules/tools to extend the capabilities without modifying the core 

of the platform. 

Tech, 

Func 

 

R2.21 New health 

metrics 

The ROBUST-6G system should be able to create new metrics 

from those previously monitored. 

Tech, 

Func 

DoA 

R2.22 Threat 

detection 

The ROBUST-6G system should aggregate information to 

preprocess early threat detection. 

Oper, 

Func 

DoA 

R2.23 Agents’ 

reconfiguration 

The ROBUST-6G system should be able to reconfigure the 

monitoring agents dynamically. 

Tech, 

Func 

DoA 

R2.24 Communication 

security 

The ROBUST-6G system should have secure communication 

between its modules, with special emphasis on the transmission of 

the agents with the module in charge of aggregating and 

preprocessing the information. 

Tech, 

NFunc, 

Biz 

 

Next, Table 3-5 presents a series of security requirements based on distributed AI that must be considered in 

the ROBUST-6G system for its correct operation. Firstly, those related to the strategic objectives of this 

application domain are introduced; and aligned with the goals and priorities of the stakeholders. Subsequently, 

it is shown the requirements related to the capabilities needed to increase security and privacy to ensure that 

the ROBUST-6G system is secure and protects sensitive data are listed. This is followed by requirements on 
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the specific technical capabilities of the system, which implement key functionalities, while finally underlining 

the system’s commitment to sustainable and responsible practices. 

Table 3-5: Distributed AI-driven security requirements in the ROBUST-6G system 

Req. 

ID 
Title Requirement description Type Origin 

Application Domain 3: DISTRIBUTED AI-DRIVEN SECURITY 

R3.1 AI/ML ethics 

guidelines 

The ROBUST-6G system should align with international AI/ML 

ethics guidelines to ensure ethical considerations are embedded in 

the development and deployment processes. 

Oper, 

NFunc, 

Biz 

DoA, 

UC1 

R3.2 Green 

scheduling 

The ROBUST-6G decentralized learning framework should integrate 

solutions to reduce carbon emissions by wisely scheduling clients. 

Oper, 

NFunc, 

Biz 

DoA, 

UC1 

R3.3 Energy efficient 

ML 

architectures 

The ROBUST-6G AI solutions (both centralized and decentralized) 

should integrate ML models that are energy efficient by design at 

inference time. 

Oper, 

NFunc 

DoA 

R3.4 Trustworthy AI The DFL framework developed in ROBUST-6G should be able to 

evaluate accountability, fairness, explainability and robustness in 

AI/ML models. 

Oper, 

NFunc, 

Biz 

DoA, 

UC1 

R3.5 XAI practices ROBUST-6G must employ robust Explainable AI (XAI) practices 

for threat detection, prediction, and mitigation, increasing 

transparency throughout these implementation processes. 

Oper, 

NFunc 

DoA, 

UC1 

R3.6 Trustworthiness 

and robustness 

capabilities 

The ROBUST-6G system must provide trustworthiness and 

robustness enhancement capabilities for AI-driven autonomous 

adaptations of 6G. 

Oper, 

NFunc 

DoA 

R3.7 Attack 

prevention 

The ROBUST-6G DFL framework should supply techniques to 

prevent attacks that attempt to infer an AI/ML model from spoofing 

learning messages flowing between federation nodes. 

Tech, 

NFunc 

DoA, 

UC1 

R3.8 Secure 

communications 

The ROBUST-6G system should make use of secure communication 

channels during the process of assessing the trustworthiness of the 

AI/ML models and the physical and sensing layers. 

Tech, 

NFunc, 

Biz 

DoA, 

UC1 

R3.9 Data privacy The ROBUST-6G system should ensure the privacy of data by 

implementing Differential Privacy (DP), Secure Multiparty 

Computation (SMC) or Homomorphic Encryption (HE) techniques 

in the FL framework. 

Tech, 

NFunc, 

Biz 

DoA 

R3.10 Accountability 

in model 

lifecycle 

The ROBUST-6G system must maintain detailed logs and audit 

trails for all stages of the AI/ML model lifecycle, including training, 

deployment, and updates, to ensure accountability. 

Oper, 

NFunc, 

Biz 

DoA 

R3.11 Robustness 

testing 

The ROBUST-6G system must incorporate extensive robustness 

testing, including adversarial attack simulations, to ensure model 

resilience against various threats such as poisoning or evasion 

attacks. 

Tech, 

NFunc 

DoA, 

UC1 

R3.12 AI/ML tools 

and techniques 

The ROBUST-6G system shall use AI/ML to enhance system 

security by facilitating predictive threat/anomaly detection. 

Oper, 

Func 

DoA 

R3.13 E2E AI/ML 

driven 

The ROBUST-6G system should introduce a Security-as-a-Service 

(SecaaS) based E2E AI/ML driven security framework for 6G. 

Oper, 

Func, 

User 

DoA 

R3.14 Decentralized 

AI/ML 

The ROBUST-6G system must generate and evaluate AI/ML models 

using a DFL framework for training shared models in a privacy-

preserving manner by design. 

Oper, 

Func 

DoA, 

UC1 

R3.15 Decentralized 

AI/ML 

The fully DFL framework of ROBUST-6G must be agnostic of any 

application UC, applicable to any multiparty scenario where shared 

AI/ML models may be generated. 

Oper, 

Func, 

Biz 

DoA 
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R3.16 AI/ML models 

aggregation 

The ROBUST-6G DFL framework should provide decentralized 

aggregation capabilities and local AI/ML model testing performed 

by multiple trusted entities, eliminating centralized aggregation 

processes that could cause bottlenecks and single point attacks. 

Oper, 

NFunc, 

Biz 

DoA, 

UC1 

R3.17 APIs for AI/ML 

results 

The AI/ML services associated with the DFL platform should 

provide a well-defined interface to obtain the results achieved by the 

AI/ML techniques used. 

Oper, 

NFunc, 

Biz 

DoA, 

UC1 

R3.18 Model 

Performance 

Monitoring 

The ROBUST-6G system must continuously monitor the 

performance of AI/ML models during the FL process to detect and 

mitigate any trustworthiness issues. 

Oper, 

NFunc 

DoA 

R3.19 Fairness 

Assurance 

The ROBUST-6G system must implement mechanisms to ensure 

fairness in the FL process. This includes identifying and mitigating 

biases in training data and model updates to ensure that AI/ML 

models do not unfairly benefit or harm any specific user group. 

Oper, 

NFunc, 

Biz 

DoA, 

UC1 

R3.20 Trust and 

reputation 

management 

The ROBUST-6G system shall provide a way to evaluate how inter-

domain relationships behave using a reputation-based system 

approach. 

Oper, 

NFunc 

DoA, 

UC1 

R3.21 User-centric 

controls 

The ROBUST-6G system should provide user-centric controls, 

enabling users to manage their data and model preferences 

effectively. 

Oper, 

NFunc 

DoA 

Finally, Table 3-6 lists a set of requirements to ensure integrated, hands-off security management for multi-

tenant AI deployments in edge, fog and cloud environments, using APIs for security lifecycle management. 

Incorporated in this list of requirements are predictive threat mitigation, configurable incident response and 

secure data management with advanced monitoring tools, and semantic data analysis and visualisation with 

real-time and historical information. 

Table 3-6: Zero-touch security management requirements in the ROBUST-6G system 

Req. 

ID 
Title Requirement description Type Origin 

Application Domain 4: ZERO-TOUCH SECURITY MANAGEMENT 

R4.1 Zero-touch 

security (ZTS) 

management 

The ROBUST-6G platform must provide zero-touch integrated 

security management in multi-tenant distributed AI deployments. 

Oper, 

Func 

DoA 

R4.2 Zero-Touch 

Security 

management 

The ROBUST-6G platform should be able to manage security 

service requests including Security Policies or Security Service Level 

Agreements (SSLAs). 

Oper, 

NFunc 

DoA, 

ZTS 

R4.3 External access 

APIs 

 

The ROBUST-6G platform must define and provide a set of APIs 

specific for the lifecycle management of security services. 

Oper, 

Func 

ZTS 

R4.4 Edge-to-Cloud 

management 

The ROBUST-6G platform should be able to operate in multiple 

environments (edge, fog, cloud). 

Oper, 

NFunc 

DoA, 

ZTS 

R4.5 Multiple 

Orchestrators 

The ROBUST-6G platform should have different orchestrators 

(Security, Resources, Network) all connected. 

Oper, 

Func 

DoA, 

ZTS 

R4.6 Multiple 

Closed-loops 

The ROBUST-6G platform must support multiple closed loops and 

avoid conflicting configurations via a priority mechanism. 

Oper, 

NFunc 

DoA 

R4.7 Zero-touch 

detection 

The ROBUST-6G system should implement and use the zero-touch 

platform for threat detection and alarm generation. 

Oper, 

Func 

DoA, 

UC2 

R4.8 Zero-touch 

Mitigation 

The ROBUST-6G system should implement and use the zero-touch 

platform for deploying corrective/mitigation actions. 

Oper, 

Func 

DoA, 

UC2 

R4.9 Threat 

prediction 

The ROBUST-6G system should be able to predict incidents and 

impose corrective actions according to the predicted threat. 

Oper, 

Func 

DoA, 

UC2 
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R4.10 Security 

services 

heterogeneity 

The ROBUST-6G platform must be able to manage heterogeneous 

security services with different requirements and capabilities. 

Oper, 

Func 

ZTS 

R4.11 Point of 

investigation 

The ROBUST-6G platform should provide a point of investigation 

for security experts to visualise security events and eventually the 

automated response is taken. 

Oper, 

Func, 

User 

ZTS 

R4.12 Optimal 

mitigation 

strategy 

The ROBUST-6G platform should provide optimal mitigation in 

terms of effectiveness and efficiency, considering security objectives 

and constraints. 

Oper, 

NFunc 

ZTS 

R4.13 Incident 

response plans 

management 

The ROBUST-6G platform should provide the possibility to define, 

modify and delete incident response plans in an incident response 

playbook. 

Oper, 

Func, 

User 

ZTS 

R4.14 Threat 

Intelligence 

management 

The ROBUST-6G platform should provide the ability to update and 

integrate from different sources, the Zero-Touch Security 

orchestrator threat intelligence. 

Oper, 

NFunc 

ZTS 

R4.15 Efficient 

Resource 

Allocation 

The ROBUST-6G platform should be aware of target environment 

resources and should be able to suggest a resource allocation strategy 

to targets while responding a threat. 

Oper, 

NFunc 

ZTS 

R4.16 Data Collector The ROBUST-6G monitoring platform should have multiple types of 

collectors to ensure flexible monitoring from several heterogeneous 

data sources at runtime. 

Oper, 

Func 

PMP 

R4.17 Communication 

Bus 

The ROBUST-6G monitoring platform should have a 

communication bus to forward the secure data parameters from 

collectors to the preprocessing modules. 

Oper, 

Func 

PMP 

R4.18 Configuration 

Manager 

The ROBUST-6G monitoring platform should have an entity in 

charge of interpreting the security requirements coming from the 

Security Orchestrator in order to deploy appropriate monitoring 

tools. 

Oper, 

Func 

ZTS, 

PMP 

R4.19 Configuration 

Manager GUI 

or API 

The ROBUST-6G monitoring platform shall provide a mechanism to 

enable external components or platform admin to interact with the 

Programmable Monitoring Platform (PMP). 

Oper, 

Func 

PMP 

R4.20 Reconfiguration The ROBUST-6G monitoring platform should support the on-

demand configuration of their internal modules such as the Data 

Aggregation, Communication Bus, or Data Collection. 

Oper, 

Func 

PMP 

R4.21 Maintenance The ROBUST-6G should enable the Platform Admin to do the 

configuration of the PMP via a GUI. 

Oper, 

User 

PMP 

R4.22 Access Control The ROBUST-6G monitoring platform should have access control 

mechanisms to verify users trying to visualize data or add 

configurations have the privileges. 

Oper, 

NFunc, 

User 

PMP 

R4.23 Short-term Data 

Storage 

The ROBUST-6G monitoring platform should enable a database to 

store configuration parameters of monitoring tools or internal 

platform components. 

Oper, 

Func 

PMP 

R4.24 Long-term Data 

Storage 

The ROBUST-6G monitoring platform should enable a database to 

store collected and processed data in a scalable and secure manner. It 

also supports long-term storage for historical analysis. 

Oper, 

NFunc 

PMP 

R4.25 Data 

Correlation and 

Feature 

Extraction 

The ROBUST-6G monitoring platform should apply semantic 

techniques to understand the context, meaning, and significance of 

the monitored raw data, generating new features from the raw and 

correlated data that are more informative for prediction algorithms. 

Oper, 

Func 

PMP 

R4.26 Data Exporter The ROBUST-6G monitoring platform shall enable the export of 

data and report to external systems or for offline analysis. 

Oper, 

Func 

PMP 
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R4.27 Data Sources The ROBUST-6G monitoring platform should provide a closed set of 

monitoring tools to ensure the proper acquisition of security params 

from network segments such as extreme-edge, edge, and cloud. 

Oper, 

Func 

PMP 

R4.28 Data Storage 

GUI 

The ROBUST-6G monitoring platform should support visualization 

capabilities for its long-term data storage in order to observe 

historical data, patterns, or analyse potential plots. 

Oper, 

NFunc 

PMP 

R4.29 Historical Data 

Retrieval  

The ROBUST-6G monitoring platform shall be capable of sharing its 

long-term data with external ROBUST-6G modules such as Data 

Management, Analysis Engines, or Alerting and Notification to 

perform more sophisticated activities. 

Oper, 

Func 

PMP, 

Data 

Fabric, 

ZTS 

R4.30 Near Real-time 

Data Retrieval 

The ROBUST-6G monitoring platform shall support external 

modules to consume real-time data to perform quick reactions or 

actions for their internal objectives. 

Oper, 

Func 

PMP, 

ZTS 

R4.31 Alert Manager The ROBUST-6G monitoring platform should generate alerts in case 

of unexpected behavior in aggregated information, stored in a Time 

Series Database of the PMP or the data pushed in the Data Fabric. 

Oper, 

Func 

ZTS, 

PMP 

4 ROBUST-6G architecture 
This section introduces the initial ROBUST-6G architecture, which is designed in alignment with the 

requirements defined in Section 3. The ROBUST-6G architecture, with integrated AI/ML techniques and 

security services exposure mechanisms, will enable E2E security in 6G networks. At the same time, the 

architecture design presented in this document is intended to support and enable a compatible interaction with 

the UC studies planned in the project. 

In this direction, this section first introduces a high-level view of the proposed ROBUST-6G architecture, 

focusing on the structure from a broader aspect. The high-level architecture shows the system components by 

abstracting the detailed view on the services and interactions. This is then followed by the functional 

architecture of ROBUST-6G, which provides a higher resolution by depicting the internal functions, interfaces 

and services provided in the system. Moreover, each of the services in the architecture is introduced with a 

detailed inspection on how the components interwork in the common platform. Finally, a high-level 

deployment view of ROBUST-6G project contributions is presented in the envisioned 6G architecture [Hex24-

D33], which is based on the principle of horizontal separation of the network functions from the underlying 

platform and overlying E2E management and exposure. 

4.1 High-level ROBUST-6G architecture 

The first high-level architecture of ROBUST-6G is illustrated in Figure 4-1. The main purpose of presenting 

this architectural view is to provide an overview of the technologies to be developed in the project and the 

objective of the system aiming to realize E2E, holistic security for the anticipated 6G networks. In this 

direction, the technologies being developed in the project and particular components included in each work 

package are shown in a modular manner. 

On top of a common cloud infrastructure, the ROBUST-6G architecture envisions a 6G network deployment 

that provides not just connectivity services for the User Equipment (UE) and end devices but also value-added 

security services for the external consumers and verticals. Within the ROBUST-6G platform, monitoring data 

from the infrastructure (i.e., fault/performance measurements) is accomplished by the Programmable 

Monitoring Platform (PMP), which may help drive incident reports and alarms through other components that 

consume PMP outcomes. This entity continuously fetches the data from the underlying infrastructure and 

Network Functions (NFs) and then shares it with the Data Management Platform for internal access. 

The main responsibility of the Data Management Platform is to enable distributed data management and 

implement relevant mechanisms for secure data access by the other entities. These entities are distributed in 

the management layer and network layer. While Physical Layer Security services are deployed in the Radio 

Access Network (RAN) domain, Security and AI Services implement a set of functions in the management 

layer to provide services for both internal and external use. 
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Figure 4-1: High-level architecture of ROBUST-6G project 

Physical layer security will integrate AI-based mechanisms to process the signals and measurement/statistics 

data to detect anomalies and take proper actions when necessary. This function implements a local closed-loop 

mechanism to execute monitoring, analysis, and actuation processes. This closed-loop mechanism, with a 

broader scope, is also available in the management layer. With the vision of zero-touch management for secure 

6G systems, multiple closed-loops are also part of the management layer for automated threat detection, 

prediction and mitigation during the security orchestration and resource management functionalities.  

These AI-driven systems which will enable physical security and zero-touch security management are 

supported by the solution that has the role of providing trustworthy and sustainable AI/ML. With the 

accommodation of enhanced FL services and AI Lifecycle Management (LCM) capabilities, the physical layer 

security and zero-touch security management entities can be effectively managed in the network in a scalable 

manner. 

On top of the management layer, we envision an exposure layer which will provide Security-as-a-Service 

(SecaaS) capability. By exposing the security services to the external consumers, ROBUST-6G platform will 

enable AI/ML driven SecaaS solutions, and so the external consumers can benefit from the internal features to 

indicate their requirements through the common exposure framework. 

4.2 Functional architecture of ROBUST-6G 

The high-level view of the initial ROBUST-6G architecture abstracts the interaction between the system 

components, details of the security services and the envisioned functionalities within. In this subsection, we 

introduce the functional architecture presenting a higher resolution. 

As depicted in Figure 4-2, the proposed ROBUST-6G architecture is built on top of a common compute 

infrastructure which accommodates edge-cloud continuum. The NFs in RAN and Core domains are deployed 

over this compute infrastructure. Depending on the deployment model of the future 6G network, 6G RAN 

functions and 6G Core Network (CN) functions are distributed between far edge, near edge and central cloud 

systems. Besides, it should be noted that the deployment of virtualized NFs also depends on the requirements 

of the network services. 
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Figure 4-2: Functional architecture of ROBUST-6G project 

One of the key components in the proposed ROBUST-6G platform is the Programmable Monitoring Platform, 

which is responsible for monitoring the underlying infrastructure (e.g., fault/performance measurements, 

incident reports, alarms) and sharing with the Data Management Platform. The data across different layers of 

the 6G system (e.g., network, application, and physical) are collected and aggregated in a unified framework. 
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The Data Management Platform is then responsible for handling secure data flow between data sources and 

authorized consumers. 

The data provided by the Data Management Platform is shared with the other components in the system such 

as Zero-touch Security Management, and Trustworthy and Sustainable AI Services. While Physical Layer 

Security modules are responsible for integrating security and privacy measures at the physical layer, Zero-

touch Security Management is the main component that manages security service requests including Security 

Policies or SSLAs, orchestrates resources, implements the zero-touch platform for threat detection and alarm 

generation and deploys corrective/mitigation actions. The AI/ML models that are accommodated by the 

Physical Layer Security and Zero-touch Security Management modules are supported by Trustworthy and 

Sustainable AI Services. These services ensure the security, privacy, explainability and sustainability of the 

AI/ML models deployed over the ROBUST-6G system. 

The detailed descriptions of each module and component in the functional architecture are presented in the 

following subsections. Meanwhile, one of the key principles in the ROBUST-6G architecture is to enable 

SecaaS for external applications and verticals. In this regard, it is important to utilize an exposure framework 

between the external domains and the ROBUST-6G platform. This interface in between can be used to expose 

security services as well as to submit service requests. This exposure framework is flexible enough to 

accommodate any customization (e.g., adding a new service). It also plays an important role in enabling UCs, 

which might consist of external entities that would be interested in consuming the security services provided 

by the overall system. 

4.3 High-level deployment view of ROBUST-6G  

After introducing the high-level and functional views of the ROBUST-6G architecture, we finally present the 

high-level deployment view of ROBUST-6G project in the envisioned 6G architecture. Each of the ROBUST-

6G project contributions is mapped to the E2E 6G system blueprint in Figure 4-3 and it shows in which layer 

the technical contributions can be enabled. 

Since the Programmable Monitoring Platform is the main coordinator for data collection for all layers and 

services, it may be hosted in a cloud infrastructure. However, because the data collected may be stored in a 

distributed manner, Data Management Platform might include components across RAN, Core, and the cloud. 

The majority of Physical Layer Security algorithms rely on the data collected from UEs and Base Stations 

(BSs). Therefore, they can be deployed at BS or within RAN. The Zero-touch Security Management Layer 

should operate on top of RAN and CN functions, potentially including components in both networks. 

Trustworthy and Sustainable AI Services can be either treated as a separate entity as a part of Beyond 

Communications Functions or it can be part of the Management Layer where the majority of Zero-touch 

Service Management (ZSM) Layer is. 

 

Figure 4-3: High-level deployment view of ROBUST-6G project contributions 
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In line with the 6G vision, ROBUST-6G supports three main aspects to realize autonomous security: (i) a zero-

touch security management and orchestration mechanism powered by distributed and trustworthy AI; (ii) a 

common distributed data management platform in coordination with the pervasive monitoring; and (iii) 

exposure of security services where applications/customers can get easy access to exposed security services 

APIs. 

4.4 ROBUST-6G security services in the architecture 

The communication between the services and entities proposed to be offered on the ROBUST-6G platform 

should be examined in detail. Although different technologies are developed in a modular manner, these 

technologies should interwork in a compatible manner and consume the offered services accordingly to ensure 

the security of the entire system and to provide security services to the externals. 

In this direction, this section discusses the objective of each technology and services to be provided in the 

common platform. Data Management Platform, Programmable Monitoring Platform, Physical Layer Security, 

Trustworthy and Sustainable AI Services and Zero-touch Security Management are the key technologies to be 

developed in the ROBUST-6G project. And they should coexist in this setting by consuming the services 

provided for internal use. 

4.4.1 Data Management Platform 

The Data Management Platform plays a central role in enabling and supervising the entire flow of data within 

the ROBUST-6G dataspace, with a strong emphasis on security and governance. This module is designed to 

handle the gathering, processing, and management of security-related data from multiple domains, including 

infrastructure, network, and services. Data is gathered through the Programmable Monitoring Platform and 

other potential data sources, enabling comprehensive monitoring across the system. 

The Data Management Platform aligns with cutting-edge paradigms in distributed data management: Data 

Mesh and Data Fabric. These paradigms address the challenges of modern data management, particularly in 

environments with complex and rapidly changing data sources, like those anticipated in 6G networks. 

• Data Mesh emphasizes a decentralized approach to data management. In this model, data is organized 

into domains, with each domain having dedicated ownership and stewardship responsibilities 

[CVH24]. This allows for: 

o Domain Ownership: Domain-specific teams manage the full lifecycle of data. 

o Data-as-a-Product: Data is treated as a valuable product, enhancing usability and quality. 

o Self-Serve Data Infrastructure: Domains can independently manage their data through shared 

infrastructure. 

o Federated Governance: Governance is distributed across domains to maintain compliance and 

consistency without central bottlenecks. 

• Data Fabric complements the Data Mesh by realizing the self-serve data infrastructure that integrates 

data from diverse heterogenous data sources, providing uniform access to data within the data spaces. 

Data Fabric builds upon a semantic layer introduces an integration layer that gathers data from various 

sources and transforms it to be consumed by applications such as AI/ML systems and analytics tools 

(see Figure 4-4). A notable feature of the Data Fabric is the ability to handle bidirectional data flows, 

depicted by the Reverse Extract-Transform-Load (ETL) block. This functionality allows systems to 

alternate between data consumers and sources based on the needs of the data process. For instance, 

while an AI/ML application may initially consume data to generate predictions, it can also serve as a 

source by sharing these predictions as new data [Gar24]. 

By combining the Data Mesh and Data Fabric paradigms, the Data Management Platform provides a robust, 

secure, and scalable framework for managing data in a distributed environment. This structure is essential for 

supporting the complexities of future 6G networks, ensuring effective governance, protection, and utilization 

of data across multiple domains. Through this innovative approach, the module supports the creation, 

exchange, and governance of data products, enhancing both security and functionality across the system. 

The module features advanced discovery tools to identify assets that need protection and assess the security 

risks to which they are exposed. This is crucial in dynamic environments, such as future 6G networks, where 

assets and security threats are continually evolving. 
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Figure 4-4: Data Fabric architecture 

The Data Management Platform comprises two main building blocks: 

• Data Fabric: Responsible for gathering, processing, and storing security-related data, the Data Fabric 

ensures that all monitored data is available to consumers via a unified, secure interface. It facilitates 

seamless data integration across diverse and heterogeneous sources such as relational databases, data 

streams, and APIs. 

• Data Governance: This building block is composed of the following components: 

o Data Catalog: Provides a registry of the data products available within the data space, 

allowing users to find and access data according to predefined policies. The Data Catalog 

promotes data democratization by providing mechanisms for users to discover available data, 

while improving the quality, privacy, and trustworthiness of the catalogued data. 

o Data Security: Enforces robust access control policies that align with the security 

requirements specified by data product owners, determining precisely who can access specific 

types of data and under what conditions. By implementing stringent security protocols, it 

ensures full compliance with privacy, security, and regulatory standards. 

Additionally, digital signatures are applied with verification conducted to confirm data origin and integrity. 

These signatures provide a trusted provenance, ensuring that data consumers can verify both the source and 

authenticity (non-repudiation) of the information. This added layer of security not only safeguards data 

integrity but also enhances confidence in data use by enabling traceability and accountability. Through this 

process, each data product within the system obtains an auditable history, which is critical for maintaining trust 

across the knowledge graph. 

The Data Management Platform will be critical in ROBUST-6G, which implements scalable and dynamic data 

exchange mechanisms. It is designed to support AI/ML-based applications, such as threat detection systems, 

which rely on real-time data integration from various domains. The Data Fabric ensures efficient data handling 

across domains while maintaining data governance to protect sensitive data and manage access control. 

4.4.2 Trustworthy and Sustainable AI Services 

The Trustworthy and Sustainable AI Services layer integrates a number of interconnected components to 

provide distributed, secure, privacy-preserved, interpretable, and sustainable AI operations required for the 

development of 6G networks. This layer of the ROBUST-6G architecture is intended to ensure that AI systems 

are transparent, privacy-focused, robust, and sustainable, while also satisfying the security and performance 

requirements of 6G infrastructures. For example, XAI increases transparency by making AI models more 

interpretable, so ensuring that AI-driven security decisions are understood. This transparency is critical for 

building confidence in 6G services, which will be based on complicated, data-intensive procedures. At the 

same time, Sustainable AI attempts to limit the environmental effects of AI, which is an important factor for 

6G networks that would require energy-efficient techniques to support a large number of connected devices. 

This is consistent with novel energy efficient learning approaches and the value of Distributed AI 

Coordination, which enables eco-friendly operations over vast, decentralized 6G networks where effective 

resource management is critical. 
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Privacy-preserving AI is essential in FL settings, especially within 6G networks, where sensitive data must be 

protected during collaborative training across distributed nodes. With 6G expected to support a massive 

number of devices and data-driven applications, robust AI is critical to safeguarding models against adversarial 

attacks, particularly in decentralized networks that are inherently more vulnerable. Enhanced FL Services 

address this challenge by enabling collaborative AI training in 6G. These services support both Centralized 

Federated Learning (CFL), where a central server aggregates models, and DFL, where nodes interact directly 

in a peer-to-peer manner. This flexibility enhances the scalability of 6G applications. 

In both centralized and decentralized FL setups, both CFL and DFL, privacy-preserving techniques are crucial 

to securing data, especially given 6G’s role in handling sensitive, mission-critical information. Privacy-

preserving distributed ML further strengthens security by ensuring AI training across distributed environments 

complies with stringent privacy and security requirements while supporting the growing demand for AI-driven 

services. 

The Trustworthy and Sustainable AI Services layer is important in managing AI operations within 6G 

networks. It ensures smooth operations and oversees the LCM of AI services, from model creation and training 

to deployment, adapting dynamically to the evolving needs of 6G applications. Distributed AI Coordination 

facilitates secure collaboration between nodes in both FL setups, maintaining data privacy despite the vast 

number of connected devices. AI Member Discovery and Selection mechanisms ensure that only trusted 

entities participate in distributed AI tasks, bolstering network security and trustworthiness. Finally, AI Model 

Lifecycle Management oversees the deployment, updates, and maintenance of AI models, ensuring they 

remain secure, effective, and resilient against emerging threats as 6G networks continue to grow. 

Together, these elements create a robust and dependable framework for distributed AI services within the 6G 

ecosystem. By integrating privacy-preserving techniques, explainable AI models, and sustainable practices, 

this architecture meets the rigorous demands for security, privacy, transparency, and efficiency required by 

next-generation networks. It guarantees that AI systems within 6G are resilient, trustworthy, and sustainable, 

even in highly decentralized environments, supporting the future of AI-driven services central to 6G 

technologies. 

4.4.2.1 Explainable AI (XAI) 

XAI-Driven Enhancements for Federated Learning, Network Security, and Intrusion Detection in 6G 

Networks: Integrating XAI into FL frameworks offers transformative advancements in privacy, security, and 

model explainability, essential for next-generation wireless networks. By embedding interpretability and 

transparency into FL models, XAI enables a deeper understanding of decision-making processes, making it 

possible to identify vulnerabilities, mitigate attacks such as poisoning or inference threats, and optimize model 

behaviours. In federated architectures, where data privacy and robustness are critical, XAI bridges the gap 

between performance and trust by ensuring stakeholders can validate model decisions without compromising 

security. Implementing XAI in hierarchical or DFL systems further enhances scalability and distributes 

computational loads efficiently, supporting real-time adaptive decision-making across distributed systems. 

These contributions align directly with WP4 (“Zero-Touch Management for secure 6G systems”)’s objectives 

on adaptive threat detection and WP5 (“AI/ML Enabled Physical Layer Security”)’s focus on enhancing 

physical-layer security through privacy-preserving and explainable methods. The synergy between XAI and 

FL extends to ZSM and physical (PHY) layer applications in 6G networks. 

FL facilitates privacy-preserving, distributed learning, enabling adaptive security solutions such as anomaly 

detection and interference mitigation. Coupled with XAI, these systems gain interpretability, allowing 

stakeholders to assess and trust automated security actions. For PHY-layer security, FL combined with XAI 

provides private and secure collaboration for detecting threats like signal interference or adversarial tampering, 

offering real-time, interpretable insights into network vulnerabilities. These efforts contribute to WP4 by 

improving automated and transparent security actions and to WP5 by addressing advanced PHY-layer threats 

in real-time. 

Resilient Beamforming and Adversarial Attack Detection: Beamforming in mmWave communication 

systems is a key area where DL models enhance efficiency but face susceptibility to adversarial perturbations 

that threaten network stability. To address these challenges, we propose an XAI-based framework leveraging 

Shapley Additive Explanations (SHAP) values for adversarial attack detection and mitigation. Using 

explanation distillation, a “teacher” detector model trains a generalized “student” model to improve detection 

rates, especially for unseen attack scenarios. Recent studies [CCM21, ZMZ+22] have shown that DL models 

for MIMO-based communications are vulnerable to evasion attacks, degrading signal quality and throughput. 
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Current defences, including adversarial training and robust beamforming algorithms [KCC+23], often fail to 

generalize to new attack scenarios. The proposed XAI-based framework addresses these gaps, enabling real-

time classification of threats and filtering them from benign received signals. This work aligns with WP4 Task 

4.2 (“Automatic Monitoring, Threat Detection, Alarm Generation”), focusing on automated threat detection in 

ZSM, and WP5 Task 5.1 (“Classification, Identification and Mitigation of Attacks at PHY”), which targets 

mitigation of adversarial attacks in the physical layer. It ensures robust and secure beamforming operations in 

dMIMO environments. 

XAI-Driven Intrusion Detection Systems: Incorporating XAI into IDSs enhances transparency and 

efficiency in ML-based threat detection. By using SHAP to analyse feature contributions across various ML 

models, our approach offers both global and local explanations for IDS decisions. This insight enables the 

development of robust clustering frameworks that optimize detection capabilities by prioritizing features and 

attack categories, reducing false positives while maintaining interpretability. Through rigorous data analysis, 

we observed similarities and differences in feature contributions and model behaviours, enabling the IDS to 

generate feature subsets for attack-specific detection, reducing model complexity without sacrificing 

performance. Cluster prioritization enhances targeted threat detection while maintaining explainability. The 

automated feedback loop aligns with WP4’s objectives on dynamic, zero-touch threat detection and incident 

prediction while optimizing computational resources. Furthermore, the transparency provided by XAI fosters 

trust in autonomous security mechanisms, directly addressing WP5’s goals of privacy-by-design and trust-

building for context-aware and semantic security in 6G networks. This framework also supports WP5’s focus 

on integrating explainable, robust AI mechanisms into physical-layer security, ensuring timing and efficiency 

requirements in high-speed environments. 

4.4.2.2 Sustainable and scalable AI 

Because 6G devices process a tremendous amount of data to provide the users with connected intelligence and 

enhance the functionalities of the network control plane, distributed AI and ML must be scalable and energy-

efficient in both the training and inference phases. The trustworthy and secure federated and fully decentralized 

training procedures developed must meet the energy requirement while ensuring an accurate learned global 

model. To reach this goal, the sustainable AI module provides client scheduling and robust aggregation 

algorithms via the optimization of dedicated KPIs, including measures of network (bandwidth, power) and 

local computing (CPU, GPU) resource consumption, and semantics-aware metrics, such as the linear and 

nonlinear version Age of Information (AoI). The latter metrics contribute to maximizing the usefulness of the 

information integrated into the model, hence reaching convergence faster and with less resource consumption. 

By allowing the system to evaluate the significance of information exchange within the algorithm, semantics-

aware metrics enable ISPs to avoid the need for fine-tuning training results to fit specific applications. This 

capability aligns seamlessly with the principles of zero-touch management. Semantics can also introduce 

context-adaptive features at the physical layer. For example, AoI-aware scheduling can enhance network 

efficiency by balancing resource utilization while ensuring QoS for critical users. Additionally, in scenarios 

where energy efficiency and reliability are paramount, semantics-aware metrics can dynamically adapt 

modulation, coding schemes, or error-correction mechanisms based on the significance of the data. This is 

particularly beneficial for power-constrained IoT devices, where critical updates, such as voltage control, can 

take priority over routine status checks. 

Besides efficient decentralized training algorithms, the sustainable AI module provides the system with ML 

architectures that are sustainable by design at inference, which is the primary use of in-network AI. 

Specifically, spiking neural networks, RNNs processing event-based data closely inspired by the human brain, 

can reduce energy consumption by three orders of magnitude when running on dedicated neuromorphic 

hardware. Also, the sustainable AI module will be used by ZSM layer to perform energy-efficient continuous 

monitoring of automation tasks and threat detection during inference. Efficient and fast inference is also useful 

to PHY layer, where its signal processing can be enhanced by running real-time ML algorithms. 

4.4.2.3 Robust AI 

Prediction confidence metrics are integral to building robust and trustworthy AI systems, especially in complex 

and high-stakes environments like 6G networks. These metrics provide a quantitative measure of the reliability 

of model predictions, enabling systems to adapt dynamically to uncertainty, mitigate risks, and maintain 

consistent performance. By integrating confidence estimation into AI workflows, models can not only flag 

uncertain or anomalous predictions but also provide actionable insights that enhance decision-making, 

strengthen operational resilience, and build user trust. 
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Variational Autoencoders (VAEs) are leveraged for robust AI to derive a confidence metric based on latent 

space representations, a method particularly effective in applications like IDSs. This metric evaluates the 

trustworthiness of predictions by analysing their proximity to known data distributions in the latent space. This 

can serve as input to the IDS system of the architecture as a means to better detect and classify malicious 

activities/patterns in network traffic, thus reducing false positives and prioritizing high-certainty security 

predictions in the architecture. 

Incorporating confidence metrics into XAI frameworks further improves the interpretability and resilience of 

these systems. XAI methods, such as those used in IDS or FL settings, can integrate confidence metrics to 

validate and refine explanations, ensuring they align with the underlying data distribution and model 

behaviour. For instance, in 6G applications like DFL for network optimization, confidence-aware XAI can 

provide transparency into model updates, facilitating trust and collaboration among nodes. This capability is 

particularly crucial in hierarchical or DFL architectures, where scalable and reliable decision-making processes 

must distribute computational loads efficiently without compromising privacy or accuracy. 

Prediction confidence also plays a critical role in enhancing specific UCs across 6G networks. For instance, in 

beamforming models, confidence metrics can assist in detecting unseen adversarial attacks, ensuring resilient 

and adaptive communication strategies. Likewise, in a privacy-preserving FL approach, confidence-aware 

methods enhance model robustness and scalability by prioritizing high-certainty updates and optimizing 

resource usage across distributed nodes. Confidence-aware intrusion detection, combined with real-time XAI 

insights, ensures timely and effective responses to network anomalies. By embedding these mechanisms into 

the AI lifecycle, from training to deployment, we create systems that are not only robust and reliable but also 

adaptable to the evolving demands of next-generation network technologies. This synergy between prediction 

confidence and UC-specific applications highlights its central role in ensuring trustworthy AI for 6G. From 

improving anomaly detection in IDS to enabling scalable, energy-efficient learning in decentralized networks, 

confidence-aware mechanisms strengthen the resilience, transparency, and reliability of AI systems, thus 

supporting their seamless integration into critical 6G environments. 

4.4.2.4 Privacy-preserving AI 

In 6G networks, it is essential to ensure that sensitive data, which is normally used to train AI models, remains 

secure and confidential. As 6G networks are anticipated to incorporate advanced AI technologies for tasks like 

network optimization, predictive analytics, and user behaviour analysis, ensuring privacy while leveraging 

AI’s capabilities is crucial. Privacy-preserving techniques, such as FL, Homomorphic Encryption (HE), and 

Differential Privacy (DP), can be utilized to enhance AI privacy within the 6G network. FL enables distributed 

training, where data remains local on devices, and only model updates are shared, protecting user data from 

exposure. By integrating FL, 6G networks can offer privacy-preserving solutions enabling secure and efficient 

AI-driven functionalities. Even more, to enhance the privacy of FL while model updates are shared with the 

server, HE can be used to encrypt model updates before being sent to another element for aggregation. HE 

allows computations (i.e., aggregation) to be performed on encrypted data at server side without needing to 

decrypt them. This ensures that sensitive data never leaves the device and remains secure throughout the FL 

process. FL service can be used in different areas of interest in the network; it can be used by network layer 

and Zero-touch Security Management Layer as illustrated in Figure 4-2. Within such an area, the client nodes, 

such as sensors, BSs, or edge devices in case of RAN or NFs in the CN, may collaborate to train a ML model 

without sharing data. A client node in these areas has access to regional data and training capabilities and sends 

updated model weights to the server. A server is in charge of model aggregation and coordination of the FL 

process. The Distributed AI Coordination component in the Trustworthy and Sustainable AI Services layer 

(Figure 4-2) will be responsible to coordinate the FL process. 

In addition, the AI functionality which will be used in 6G network, is vulnerable to privacy attacks such as 

model inversion attacks and membership inference attacks. This is an important concern specially when AI 

systems process sensitive user data in the network. Privacy techniques such as DP, Secure Multi-Party 

Computation (SMPC), Anonymization and Data Masking can be used to prevent privacy leakage. Thus, the 

AI functions which are used by different layers in 6G network can request Privacy-preserving AI component 

for privacy services. The privacy services will be provided with respect to the UC, the requirements, and 

capability of the devices. 

4.4.2.5 Enhanced FL Services 

Traditional centralized data processing approaches are inadequate for decentralized and dynamic environments 

like the ones expected for 6G, due to scalability, latency, and privacy limitations. Enhanced FL Services have 
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emerged as a pivotal solution within 6G networks, enabling collaborative ML processes across distributed 

devices without the need to centralize sensitive information. These services leverage the computational 

capabilities of edge devices and network nodes, facilitating real-time analytics and decision-making directly 

at the edge of the network. This approach reduces communication overhead and enhances data security by 

keeping sensitive information localized. 

Centralized FL 

CFL enables multiple clients—such as user devices, edge nodes, or other computational entities within a 

network—to collaboratively train a shared global model under the coordination of a central server or 

aggregator. In this paradigm, each client uses its local data to train a local model and then periodically transmits 

updates, typically in the form of model parameters or gradients, to the central aggregator. The central 

aggregator is responsible for collecting these updates from all participating clients, integrating them to refine 

the global model, and then redistributing the updated global model back to the clients for further local training. 

In the context of 6G networks, CFL can be particularly effective when the network architecture and model 

design allow for centralized aggregation without incurring significant communication overhead or latency. 

Specific nodes within the network such as edge servers or cloud-based central units that have sufficient 

computational resources and network connectivity can serve as central aggregators. These nodes facilitate the 

aggregation process by efficiently managing the collection and dissemination of model updates. However, 

CFL presents several challenges, particularly in 6G networks with massive device connectivity and stringent 

latency requirements. The central aggregator can become a bottleneck as the number of clients increases, 

potentially leading to increased latency and reduced scalability. Moreover, the central aggregator represents a 

single point of failure; if it becomes unavailable or compromised, the entire training process can be disrupted. 

This centralization can also raise privacy concerns, as the aggregator may have visibility into the model 

updates, which could potentially be exploited to infer sensitive information about the client’s local data. 

Decentralized FL 

DFL is an advanced collaborative ML paradigm that eliminates the need for a central server or aggregator. In 

contrast to traditional CFL, DFL allows clients such as mobile devices, edge nodes, or other network entities 

to communicate directly with each other to share and update AI/ML models. This decentralized approach 

leverages the distributed nature of modern networks, particularly in 6G environments, enhancing scalability, 

robustness, and privacy. In DFL, the learning process is entirely distributed among the participating clients. 

Each client maintains its local model and uses its private data to train this model. The clients periodically 

exchange model updates with their peers, collaboratively working towards a consensus on the global model 

without relying on a central coordinator. 

Initially, each client independently initializes its local model, which could be a random initialization or based 

on a commonly agreed upon starting point. The clients then perform local training using their private datasets, 

updating the model parameters to reflect patterns and insights derived from their local data. This local training 

phase is crucial, as it allows clients to learn from their data without exposing it to others, preserving privacy. 

Following local training, clients engage in peer-to-peer communication to exchange model updates. Peer 

selection is a critical component of this process. Clients may select peers based on various criteria, such as 

network topology to optimize connectivity, trust levels to ensure security or even random selection to enhance 

robustness. Effective peer discovery mechanisms are essential to identify suitable peers for model exchange, 

balancing the need for diversity in the updates received with practical network efficiency considerations. Once 

peers are selected, clients securely exchange their model updates. Secure communication protocols are 

employed to protect the confidentiality and integrity of the model updates during transmission. This is 

particularly important to safeguard against potential adversarial attacks. 

Upon receiving model updates from their peers, each client performs local aggregation. This aggregation step 

integrates the received updates with the client’s model parameters to create an updated local model. 

Aggregation methods can vary in complexity. Simple approaches might involve averaging the model 

parameters, while more sophisticated methods might weigh up updates based on the reliability of the source, 

the relevance to the client’s data, or the statistical properties of the updates. For example, clients might assign 

higher weights to updates from peers with similar data distributions or those with a history of providing high-

quality updates. The updated local model is then used for further training, which repeats in subsequent 

iterations. This iterative process progressively allows the models across the network to converge toward a 

consensus. Over time, despite the lack of a central coordinator, the collaborative learning process enables 

clients to build more generalizable and robust models than those trained solely on local data. 
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Privacy-preserving distributed ML 

Privacy-preserving distributed ML is a cornerstone of deploying collaborative AI models in 6G networks, 

where protecting sensitive data and resilience against adversarial attacks are paramount. As devices participate 

in FL processes, they exchange information that, if not properly secured, could lead to privacy breaches or be 

exploited by malicious actors. To address these challenges, advanced techniques such as DP and secure 

aggregation algorithms are employed to enhance both the confidentiality and integrity of the learning process. 

DP provides quantifiable privacy guarantees for individuals within a dataset. In the context of distributed ML, 

DP ensures that the inclusion or exclusion of a single client’s data has a negligible impact on the output of the 

learning algorithm. This property makes it statistically improbable for an adversary to infer sensitive 

information about any individual participant based solely on the model updates or the final model parameters. 

Implementing DP in FL involves adding carefully calibrated noise to the model updates before sharing them. 

Each client perturbs its local model parameters or gradients with random noise drawn from a specific 

probability distribution, typically a Gaussian or Laplace distribution. The amount of noise is determined by 

the desired level of privacy, quantified by the privacy loss parameter, often denoted as epsilon (ε). A smaller 

epsilon corresponds to stronger privacy but may impact model accuracy due to the introduced noise. The key 

steps in applying DP in distributed learning are: 

• Local Noise Addition: Each client adds random noise to its model updates before transmission. This 

noise masks the contributions of individual data points, ensuring that sensitive information cannot be 

retrieved from the updates. 

• Privacy Budget Management: The cumulative privacy loss over multiple training rounds is tracked 

using a privacy accounting mechanism. Clients manage their privacy budgets to balance model utility 

and privacy protection trade-offs. 

• Aggregation of Noisy Updates: The aggregator (or peers in decentralized settings) combines the 

noisy updates. Due to the properties of DP, the aggregated model retains useful patterns from the data 

while preserving individual privacy. 

Secure Aggregation Algorithms are designed to protect the integrity of the aggregation process in distributed 

learning, particularly against adversarial attacks that aim to disrupt or manipulate the global model. Unlike 

traditional aggregation methods like Federated Averaging (FedAvg), which may be susceptible to malicious 

clients injecting false or corrupted updates, secure aggregation algorithms incorporate mechanisms to detect 

and mitigate such threats. These algorithms focus on aggregation settings and strategies that enhance 

robustness against attacks, improving standard methods by incorporating statistical and algorithmic 

safeguards. In this sense, they account for malicious or faulty clients that may send arbitrary or harmful 

updates. The aggregator employs statistical techniques to filter out anomalous updates. For example, instead 

of computing a simple average, the aggregator might use coordinate-wise median or trimmed mean 

calculations, which are less sensitive to extreme values introduced by adversarial clients. In other perspectives, 

algorithms could select updates that are most representative of the majority, effectively isolating outliers that 

may result from malicious activity. These methods involve computing the distances between updates and 

selecting those that are closest to the consensus of the group. Combining DP with robust secure aggregation 

provides a comprehensive defense strategy. DP protects individual data privacy by obscuring specific 

contributions, while robust aggregation methods safeguard the overall model integrity against malicious 

attempts to disrupt the learning process. This dual approach is particularly effective in large-scale networks 

like 6G, where the diversity of devices and potential for adversarial behavior is significant. 

4.4.2.6 AI Service Management Layer 

Today’s networks mostly provide communication capabilities, but 6G is expected to transform the network 

into a powerfully distributed AI platform. The vision for 6G demands for the widespread presence of AI 

applications, and this requires the evolution of mobile network architecture into a platform that supports such 

applications. Thus, future network architecture should be designed to support AI applications and services. 

The network is expected to be responsible for orchestrating, managing, scheduling, and exposing AI-related 

network services. This exposure of AI-related services can be enabled by the AI-as-a-Service (AIaaS) concept. 

AIaaS consists of enablers and APIs offering AI functionalities to internal network/application functions, or 

external consumers. AIaaS provides AI services and functions such as analytics, prediction, classification, 

eliminating the need for users to build and maintain their own AI infrastructure. The AI services are supplied 

by pre-built AI models that are accessible via APIs. Possible examples for the exposed AI services can be a 



 

 
 Deliverable D2.2 

 

Dissemination level: Public Page 51 / 69 
 

network analytics service for different KPIs or security analytics service for security incident prediction or 

detection. 

External and/or internal consumers can access the models that have been deployed in the AI agents within the 

AI services layer. Inference requests initiated by the consumers are handled by the AI agents and the outputs 

are in the form of predictions or reports for the customers in an as-a-service fashion. In such a scenario, 

deployed models might be vulnerable to several types of attacks, such as model evasion and model inversion, 

in which adversaries attempt to influence the decision of the target model by carefully constructed 

perturbations to the input. These risks necessitate constant monitoring of the inference outputs provided by AI 

agents and activating retraining procedures when necessary. 

4.4.3 Zero-touch Security Management 

Zero-touch security management encompasses many different and complex concepts. First of all, it includes 

SecaaS, which aims at the flexible implementation of scalable security solutions. These cybersecurity solutions 

are made transparent to the consumer in terms of implementation and infrastructure overhead. This reduces 

the need for consumers to be experts in technical security details, as they can simply request a high-level 

service and let the system handle it in the background. In addition, the consumer gets an easy-to-use solution 

that is, in most cases, continuously updated to the latest version. The Security as a Service functionality defined 

before is just an example of the whole potentiality of the zero-touch security management module. Other 

functionalities like monitoring, threat detection, threat prediction, threat mitigation, and resource orchestration 

are designed according to the requirements defined in Section 3, Table 3-6, reporting the zero-touch security 

management application domain. 

The complexity of problems of these dimensions may require the adoption of standards and abstractions such 

as the closed-loop. The closed loop is a simple way of representing the sequence of tasks that follow during 

the application of a particular service. The concept of the closed loop has been already presented in Section 

2.2, and more in detail in Deliverable 4.1 but to briefly remind, it is composed of the following four functions: 

monitoring, analysis, decision, and action. 

The monitoring step may be implemented by one or more components, and it is responsible for collecting data 

from multiple data sources. The first step regarding the collection and classification of data from different data 

sources is extensively discussed in the previous Sections 4.4.1 and 4.4.2 through the use of the Data 

Management Platform and the Programmable Monitoring Platform. 

The next two steps lead to the analysis and decision steps. They consist of the study of all collected data for 

the extraction of valuable information such as the presence of a threat. Later, the decision step defines which 

could be the most suitable plan to execute to mitigate the previously detected anomaly. From an alternative 

perspective, the analysis and decision-making phases of the closed loop can benefit from the integration of 

AI/ML models, which enhance the accuracy and efficiency of identifying the most appropriate actions. With 

the rapid escalation in the volume and complexity of cyber threats, traditional reactive approaches that depend 

on human intervention are increasingly ineffective. By adopting a modern zero-touch architecture coupled 

with DL models, organizations can not only accelerate threat detection and mitigation but also minimize human 

error and response delays, ultimately reducing the impact of attacks and limiting downtime. 

Finally, the last step of a closed loop is the action, which translates into the physical execution of a decided 

action to update the state of the system to a new healthy one. To automate all of the steps, the concept of the 

security orchestrator plays a crucial role. In fact, an orchestrator minimises manual intervention, thereby 

reducing costs and human error, by abstracting very complex combinations of execution environments, 

themselves often composed with more dedicated orchestrators. A security orchestrator has a northern interface 

for consumers who need to address security services requirements towards a service provider. Once both 

parties agree on the service they wish to achieve, the orchestrator’s role is to decompose and translate the 

requirements to a combination of requests towards orchestrators specialized for the targeted environments, 

using a southern interface such as the Network Orchestrator or the Resource Orchestrator. For example, these 

requests can contain the expression of the security requirements of a consumer for a core network environment, 

a cloud environment, or an edge environment. Then the goal of the security orchestrator is to ensure that the 

agreed conditions are met and maintained throughout time and in an E2E way, in all the execution 

environments, by gathering information from the underlying orchestrators. It means that if, when monitoring 

certain conditions, the analysis detects the presence of a threat to the consumer’s services, a specific action 

should be decided and scheduled to resolve the issue in all the environments concerned by that threat. The 

actions to be computed and taken by the security orchestrator are policy-based. A security policy is the product 
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of the agreement between the service consumer, who wants to deploy its service with security, and a service 

provider, who owns a catalogue of security services to implement the policy. The security policy is applied 

over a topology of services which abstracts the environments where they are deployed. Through this security 

policy, a security orchestrator observes the state of the services, and alerts or remediates to threats and 

modifications, when a violation of the policy is detected. 

4.4.3.1 Zero-touch Security Platform: a functional architecture 

One of the key aspects characterizing the definition of the Zero-touch Security Platform architecture is the 

separation of concerns. The functional architecture is indeed built by several macro-services covering specific 

roles through a set of dedicated functionalities, insisting on any segment of the 5G/6G mobile network. Figure 

4-5 shows the set of Macro-Services and their connections. 

 

Figure 4-5: ROBUST-6G Zero-touch security platform functional architecture 

The consumers of the platform security capabilities can be human users (e.g., verticals, sysadmins, etc.), third 

party applications and even existing orchestrators (e.g., 6G service orchestrators belonging to the Telco 

Provider). In this last case, the 6G orchestrator may request the provisioning of a security service to the zero-

touch security platform as a side element of a vertical mobile service it is orchestrating. For example, a vertical 

may request the provisioning of a video stream service, specifying certain security constraints: the 6G 

orchestrator will request to the security platform a security service that addresses the security requirements, in 

a transparent manner from the vertical point of view, enabling the concept of SecaaS. 

The exposure of the security capabilities is realized through a specific exposure layer (not shown in Figure 

4-5) whose characteristics mainly depend on the level of integration with the existing 6G MNO infrastructure. 

Security Service Orchestration (S-SO). Represents the core service for the security orchestration and the 

entry point for requesting Security Services (S-Services). Its internal logic encompasses functionalities for 

service parsing, validation, and decomposition, based on specific information models aimed at providing a 

uniform definition of S-Services. S-Service Orchestration also includes functionalities for maintaining the 

status of provisioned S-Services and the related remediation plans, executed every time an anomaly, targeted 

by the S-Service, is detected and/or predicted. 

Security Resource Orchestration (S-RO). Performs deployment and configuration of the Security 

Applications (S-Applications) parts of the S-Service in the target environment i.e., Cloud, Edge, Far/Extreme 

Edge as shown in Figure 4-5, by exploiting existing cloud managers of those segments e.g., Kubernetes 

[K8s24], K3s [K3s24], OpenStack [OS24], etc. S-Application can be well-known security tools (e.g., Snort 

[Snort24]) and/or brand-new SW designed and developed from scratch for the purpose of the project. This 

would include also those applications in charge of implementing the different stages of the Security Closed-

Loop (S-CL) in particular Decision and Execution: the Monitoring stage is realized through a dedicated 

programmable pervasive monitoring service (described below), while the Analysis stage can be orchestrated 

by either the S-RO or the Security AI/ML management service, as described below. S-RO also implements 

algorithms and techniques for robust resource allocation. 
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Network Security Management (NSMgmt). Applies specific network configuration to guarantee security on 

RAN, Transport and CNs, according to the security constraints specified by the S-Service. As per S-RO, relies 

on existing network controllers for each segment, e.g., Software-Defined Networking (SDN) controllers for 

Radio and Transport and CN control plane. 

Security Closed-Loop Management (S-CLMgmt). This Macro-Service covers two important aspects 

characterizing the management of S-CLs, following the work published by ETSI ZSM in ZSM-009 [ZSM009-

1]: i) S-CL Governance i.e., interfaces and logic for S-CL Orchestration, stage configuration, runtime 

interaction, and ii) S-CL Coordination i.e., interfaces and logic for frictionless co-existence of multiple closed-

loops. 

Programmable Pervasive Monitoring. Provides functionalities to select and collect data form different data 

sources suitable for the monitoring a target environment a timely detect/predict anomaly. The most important 

ones are the real-time data exposure, for immediate detection and/or AI/ML inference, and the historical data 

exposure, useful for AI/ML training and offline analysis. This Macro-Service is highly pervasive, capable of 

monitoring parameters at different layers and segments of the 6G systems.  

Security AI/ML Management. Provides functionalities for secure AI/ML model training, selection of models 

and datasets, and possibly, AI/ML model deployment in the target environment. The model selected is part of 

the S-CL associated with a given security service, mainly covering the role of the Analysis stage of the loop, 

although it can be employed also for decision purposes. This Macro-Service is an abstraction that groups all 

the functionalities exposed by the AI Service Layer in the Trustworthy AI Services Layer shown in Figure 4-2, 

i.e., AI Service Lifecyle management, Distributed AI Coordination, AI Member Discovery and Selection, AI 

Model Lifecycle Management. 

4.4.4 Physical Layer Security 

Physical Layer Security is a key component of the ROBUST-6G project and is expected to play an important 

role in complementing cryptographic security in future cellular systems. To this end, a specific module is 

expected to operate on 6G RAN where physical layer signals are collected and where we can have a faster 

response to threats at the physical layer. The module will include several components that are related to the 

detection and mitigation of specific threats. In particular, the module will include the following components: 

• DoS and anomaly detection: This model aims at detecting DoS attacks and in general anomalies. It 

will be based on the detection of jamming attacks and other DoS attacks that operate at the physical 

layer and other anomalies in the signals can be detected. This block may include ML parts for the 

automatic analysis of the signals and classification techniques to detect anomalies. It may leverage the 

RF features of devices as an input to detect attack attempts. 

• Secret key generation: Key generation is an important security primitive for cryptography, and in 

Physical Layer Security keys can be obtained from the signals exchanged on air among devices. This 

module will have a strong interaction with the capabilities of the propagation environment available 

in the cell. For example, the availability of RISs and multiple antennas (MIMO) will be exploited to 

generate the key. Some interaction of local instances in different BSs can be envisioned when using 

dMIMO solutions operating over different BSs. Use of ML solutions for information extraction and 

information reconciliation will be used (possibly distributed in a federated approach) to learn the 

statistics of the channel and the most useful channel features to be used for randomness extraction. 

The ML model can be shared with other BSs, especially when they cover the same environment with 

overlapping of coverage. 

• Privacy: Privacy-preserving technologies are important in all layers where sensitive data are stored or 

processed. Therefore, this module will integrate distributed privacy-enhancing mechanisms, that are 

relevant to establishing distributed trust, i.e., trust that is not anchored in a central trusted authority, to 

avoid some problems and concerns such as single points of failure and risks of data violations and 

privacy compromises. For this purpose, FL will be used to guarantee a fully distributed framework. 

• Confidentiality: Confidentiality solutions have been the first to be considered in the physical-layer 

security context, with the study and design of wiretap coding solutions. This component will include 

such solutions in the architecture and will exploit specific new technologies that are under 

consideration for 6G networks, such as highly directive links, e.g., fronthaul/backhaul using a massive 

number of antennas in mmWave, RISs, and dMIMO and other controllable devices (such as drones 

operating as relays or BSs) are available. When using these technologies for confidentiality, ML 

solutions will be adopted to learn how to configure the devices and what signals they should transmit 
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to improve the confidentiality of transmissions. Such models will greatly depend on the local wireless 

propagation characteristics but can also benefit from common training among different BSs that cover 

partially overlapping environments. 

• Authentication: Authentication is among the main security mechanisms that can greatly benefit from 

the elaboration of physical-layer signals, as several features of these signals uniquely identify devices. 

This capability is also critical for identifying fake BSs and spoofing attackers, as adversaries can 

deploy rogue transmitters to mimic legitimate ones, posing significant security risks. Indeed, two main 

approaches can be followed for authentication: either we use the impairments added by the transmitter 

on the transmitter data (in what is known as device fingerprinting) or we use the characteristics over 

which signals are transmitted to identify the location of the transmitter and, under time-unvarying 

conditions, its identify (in what is known as channel-based authentication). In both cases, the 

identification of the users is affected by noise and interference that degrade the estimation of the device 

fingerprint or channel characteristics at the receiver. Moreover, time variations should also be taken 

into consideration when deciding on the authenticity of the received signals. To this end, ML 

techniques can be useful and again we have models that can be trained and used either locally or in 

part shared among multiple BSs. Therefore, the authentication component will have interactions with 

other analogous components in other BSs and models can be exchanged and trained in a distributed / 

decentralized fashion in the network. Also, to consider time variations in channel characteristics, the 

autoregressive model approach might be utilized for system with low mobility. 

All these components may use and share ML models to perform detection and mitigation. The training of such 

models get support from the envisioned Trustworthy and Sustainable AI services. This part gets the necessary 

data from the data management platform, helps to train and validate the models centrally in a trustworthy way 

and deploys it to the RAN domain. Therefore, the security orchestrator will organize the data flow and the 

decentralized/distributed learning, as well as the distribution of the models to RANs. 

Furthermore, to give some examples of how these components impact the other components in the architecture, 

we provide the following three examples: 

1. By combining robust and fast authentication using the Angle of Arrival (AoA) with fast secret key 

generation using Long Short-Term Memory (LSTM) networks, fast authentication and key agreement 

protocols can be provided. These are instrumental specifically for the UC2, scenario 3. 

2. Working on proving that the AoA in digital MIMO arrays is a robust authentication feature, i.e., is not 

prone to impersonation type of attacks, allows to use it as a trusted feature to identify malicious 

behaviour in dynamic systems, e.g., vehicle to vehicle networks as was demonstrated in our works so 

far. This in the future can feed the update of reputation models used in WP3 (“Trustworthy and 

Sustainable AI/ML for 6G Security”). 

3. Robust location authentication (e.g., using AoA) can be used in zero touch automaton for automatic 

device enrolment, which is examined in WP4. 

The above advanced are currently in various stages of advancement and are expected to be delivered in their 

totality before M24. 

4.4.5 Use Case Interactions 

Use Case 1 (UC1) is thoroughly detailed in Section 2.1. Below, a global sequence diagram illustrates the main 

interactions between the various components involved in UC1 and the ROBUST-6G architecture (see Figure 

4-6). The sequence diagram illustrates a process where a consumer, acting as the end-user, initiates a DFL 

service to enhance the performance and security of distributed AI applications. The primary objective is to 

leverage advanced AI techniques while ensuring data privacy, robustness against attacks, and model 

explainability. 

Initially, the consumer requests the DFL process from the Enhanced FL Service. This service then 

communicates with the Distributed AI Coordination component to begin the DFL process which is part of the 

initialization phase. The coordination component deploys the necessary algorithms across the network through 

the DFL framework. This deployment allows for the training of local models on distributed devices or nodes, 

facilitating collaborative learning without centralized data aggregation. 

As the local models are trained, trustworthy AI-driven security techniques are applied to ensure the integrity 

and reliability of the learning process. Privacy-Preserving AI solutions implement confidential computing 

methods on the data to be included in the framework, safeguarding sensitive information during training. The 
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Robust AI approach checks the performance of the trained models against potential adversarial attacks and 

ensures resilience against poisoning attacks that could compromise model integrity. Additionally, the XAI 

component utilizes methods like SHAP and Local Interpretable Model-Agnostic Explanations (LIME) as post-

hoc explanations to provide insights into the model’s decisions, enhancing transparency and trustworthiness. 

After the models have been trained and secured, the framework shares the model updates across the network. 

This collaborative sharing enhances the overall model performance by aggregating knowledge from various 

local models while maintaining data privacy. The consumer then provides feedback on the model’s 

performance to the Network Administrator. Based on this feedback, the administrator deploys a readjusted 

model across the network through the framework, ensuring that the models continue to meet the user’s needs 

and adapt to new data or requirements. 

The main objectives of this process are to facilitate a secure and efficient decentralized learning environment 

that respects user privacy, maintains robustness against security threats, and offers explainable insights into 

AI decisions. The interactions between the consumer, AI components, and network administrator work 

cohesively to achieve these goals, resulting in a trustworthy and adaptive AI system that aligns with the 

consumer’s expectations and the dynamic nature of distributed networks. 

 

Figure 4-6: UC1 Scenario 1 interactions 

Use Case 2 (UC2) has been deeply described in Section 2.2 as well as in Section 4.4.3 with a focus on technical 

details and presenting possible components implementing the proposed functionalities. A high-level sequence 

diagram mapping these functional elements’ interaction is reported in Figure 4-7. 

As depicted in the diagram, the workflow can be divided into two distinct phases. The first phase, usually 

identified as Pro-Active Security Orchestration, is responsible for the initial configuration that provides the 

necessary parameters to correctly handle the services and the associated security constraints. This fact means 

that once an external consumer executes a service request, the Zero-touch Security Orchestration interacts with 

both the Data Monitoring & Management module and, on the other hand, the Trustworthy and Sustainable AI 

Services module. 

The interaction with the Data Module triggers the data collection process. The other interaction with the AI 

Module is required for getting suitable ML models capable of process and analyse the collected data. It is 

important to emphasise that these preliminary steps are essential for the proper configuration of a Security 

Application in the target environment, ensuring the execution of the close-loop functions during run-time 

operations. The second phase also known as Reactive/Predictive Security Orchestration happens at runtime. 
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During this phase, the security application continuously receives the collected and structured data from the 

environment and uses the preconfigured ML models for data analyses. If the analysis identifies the presence 

(or predicts in case of the future) of a threat two alternative scenarios come into play. 

 

Figure 4-7: UC2 high-level functionalities interactions 

The first option is to involve the human by triggering an alert. In sensitive applications, the need for the human-

in-the-loop is mandatory due to critical and ethical aspects. In this case, it is the human’s responsibility to 

define additional actions to mitigate the anomaly. On the other hand, for soft applications, it is possible to not 

involve the human and automatically propose and apply a mitigation plan. This is particularly convenient in 

applications where, in case of failure, there is minimal damage or significant risks, allowing faster and efficient 

threat mitigation. 

Use Case 3 (UC3) is detailed extensively in Section 2.3. Below, a global sequence diagram illustrates the 

different interactions between the various components involved. For the sake of readability, and due to the size 

limitations, this complete diagram is shown in Figure 4-8, Figure 4-9, and Figure 4-10. 

The diagram of Figure 4-8 illustrates the authentication and authorization flow within the system. First, the 

Application initiates an authentication request to the Identity Provider (IdP) containing its identity name and 

credentials. This corresponding IdP verifies these credentials internally and, upon successful verification, 

sends the authenticated identity information to the Policy Enforcement Point (PEP). The PEP then initiates an 

authorization request to the Policy Decision Point (PDP), which evaluates the access rights for the provided 

identity. 

After processing the authorization, the PDP sends the decision back to the PEP, the PEP returns this 

authorization decision to the IdP, which then issues an access token to the Application. 
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Figure 4-8: UC3-1 interactions 

The diagram illustrates the API GET request flow within a system where the Application interacts with various 

components to retrieve information about a specific service. The flow begins with the Application making a 

GET request via the API Gateway, which processes this request by validating the access token through the 

PDP. Once validated, the API Gateway forwards the request to the Transformation Function. Simultaneously, 

the Programmable Monitoring Platform, the Infrastructure, Network, and Service layer sources continuously 

send monitoring data to the Data Fabric, where the Knowledge Graph organizes and stores this information. 

When the Transformation Function receives the GET request, it queries the Data Fabric for relevant monitoring 

information. The Data Fabric responds with the requested data, which the Transformation Function then 

returns to the API Gateway. Finally, the gateway relays the data back to the Application, completing the request 

flow. 

 

Figure 4-9: UC3-2 interactions 

The diagram illustrates the API POST request flow within a system where the Application sends configuration 

requests. The process begins with the Application issuing a POST request through the API Gateway, including 

API parameters and an access token. The gateway first validates this token through the PDP. Upon successful 

validation, the gateway forwards the request to the Transformation Function, which handles configuration 

actions across various components. The Transformation Function sends configuration instructions as Internal 

API requests to each Infrastructure, Network, and Service layer source. Each source executes the configuration 

action and responds back to the Transformation Function. Once all responses are received, the Transformation 



 

 
 Deliverable D2.2 

 

Dissemination level: Public Page 58 / 69 
 

Function sends a consolidated response back to the API Gateway, which relays it to the Application, 

completing the POST request flow. 

 

Figure 4-10: UC3-3 interactions 

5 ROBUST-6G dataspace 
The ROBUST-6G dataspace is built around two core modules: Data Fabric and Data Governance, which 

together create a secure, efficient, and standardized environment for data management across distributed 

domains. Designed for the complex and rapidly evolving landscape of 6G networks, this architecture 

emphasizes interoperability and robust data governance. Figure 5-1 illustrates the dataspace architecture, 

highlighting the interaction between these modules to form a cohesive, E2E data management platform. 

In Figure 5-1, a data consumer accesses what is referred to as a data product. A data product in ROBUST-6G 

includes data, metadata, and the software necessary for processing, all developed in alignment with Findability, 

Accessibility, Interoperability, and Reusability (FAIR) principles to ensure the data’s optimal usability across 

multiple contexts. These principles define the characteristics of a ROBUST-6G data product as: 

 

Figure 5-1: Dataspace architecture 
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1. Findable: Data assets are thoroughly tracked, with comprehensive details on their location and 

ownership, ensuring accountability and discoverability. All data sources are clearly identified for ease 

of access. 

2. Accessible: A shared infrastructure enables consistent data access throughout the continuum, with 

controlled exposure to only authorized consumers, enhancing security and uniform access. 

3. Interoperable: Agreed-upon data models are leveraged to ensure data can be easily understood by 

any consumer within the continuum, fostering clarity and consistent data interpretation. 

4. Reusable: Data is designed for open use and interoperability, allowing seamless application across 

various UCs and domains, maximizing its value and applicability. 

5.1 Data fabric 

A cornerstone of the ROBUST-6G architecture is its integration of a knowledge graph within the data fabric. 

This knowledge graph supports the flexible and dynamic nature of 6G environments, providing a data model 

that naturally connects diverse data sources through relationships and semantic annotations. The knowledge 

graph thus enables interoperability and simplifies integration across heterogeneous data types, while allowing 

for more sophisticated querying and data analysis. 

This involves transforming incoming unstructured data into a structured format that organizes it as a collection 

of well-defined concepts. At this stage, ontologies play a pivotal role, acting as the backbone for establishing 

relationships between diverse entities and concepts, as shown in Figure 5-2. Ontologies enable raw data to be 

converted into a structured, semantically rich format that enhances interpretability. This structured 

representation allows for deeper comprehension, enabling devices to process and recognize real-world 

concepts and relationships in a meaningful way. 

 

Figure 5-2: Data modelling 

The ROBUST-6G Data Fabric is composed of several interconnected components, as illustrated in Figure 5-3: 

 

Figure 5-3: Data Fabric 

• Data Product Manager: Serving as the main interface of the Data Fabric, this component facilitates 

the onboarding and registration of data products by data product owners. It orchestrates the Data 
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Product Pipeline for converting raw datasets into data products and collaborates with the Data 

Catalogue and Data Security components to govern these new data products. 

• Data Product Pipeline: This pipeline transforms raw datasets into interoperable, semantic data 

products that are integrated into the knowledge graph. This transformation is unnecessary for “native” 

data sources that already adhere to a standard format and are semantically annotated according to the 

agreed-upon ontologies within the continuum. The Data Product Pipeline includes several key 

subcomponents designed to efficiently process and manage data: 

o Ingestion: These modules are responsible for ingesting data from sources listed in the Data 

Catalog. Collectors can operate in both batch and real-time modes, adapting to the nature of 

the target data source. For batch data sources, collectors are scheduled to periodically extract 

data. 

o Preprocessing: Transforms raw data from various sources into a unified format, ensuring 

consistency across datasets. In this step, the raw data is mapped transformed into Resource 

Description Framework (RDF) according to a target ontology. To this end, the RDF Mapping 

Language (RML), which is being standardized under the World Wide Web Consortium 

(W3C) Knowledge Graph Construction (KGC) Community Group [KGC24], will be used. 

o Serving: Pre-processed data and metadata are incorporated into a knowledge graph. 

• Knowledge Graph Database: This core component maintains the Knowledge Graph of the Data 

Fabric. In scenarios where multiple Data Fabric instances are interconnected (e.g., across multiple 

ROBUST-6G domains), each database provides a fragment of the global Knowledge Graph of the 

dataspace. 

5.2 Data governance 

Data governance within the ROBUST-6G architecture ensures that data is managed with security, compliance, 

and transparency as top priorities. Key governance components include: 

5.2.1 Data Catalog  

The Data Catalog building block provides a registry of the data products available within the ROBUST-6G 

platform. This block provides the pieces for data owners and data governance teams to register data products 

and oversee their usage. Similarly, the Data Catalog helps data users discover data products based on additional 

metadata such as terms defined in a glossary business or the people that own these data products. Based on 

these requirements, the Data Catalog will build upon a metamodel that is drafted in Figure 5-4. 

 

Figure 5-4: Conceptual metamodel of the Data Catalog 

In essence, data products are built from data sources by using the Data Fabric. Each data product is published 

and curated by a data product owner. Similarly, each data source will have a person that accounts for the correct 

functioning and maintenance of it. The Data Catalog will include business glossaries containing terms that 

have been formally defined among members of the ROBUST-6G platform. In turn, these terms will be linked 

to data products based on the concepts that the contained data refers to. 

To support this, the Data Catalog block is built upon two main components: the Data Catalog API and the Data 

Catalog Knowledge Graph. 
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Data Catalog API 

This component implements an API that introduces an abstraction layer for data owners and data users to 

interact with the Data Catalog. At a high level, this API exposes services for managing the following core 

concepts in the Data Catalog metamodel: 

• Data Source: 

o Registration data sources, containing raw data, from which data products are built. Examples 

of data sources are Relational Database Management Systems (RDBMS), message queue 

systems (Kafka, Message Queuing Telemetry Transport–MQTT) or remote files and APIs. 

o Registration knowledge graph databases of the different data fabric, to be managed as data 

sources of data products. 

• Data Product:  

o Registration of data products that have been built using the Data Fabric. 

o Search for data products and provide information about the Data Fabric where they can be 

accessed (i.e., the knowledge graph database of the Data Fabric). 

• Business Glossary:  

o Creation of a business glossary. 

o Search of terms defined in the glossary. 

o Assignment of glossary terms to data products. 

• Ownership:  

o Assignment of owners to data products. 

Data Catalog Knowledge Graph 

The Data Catalog internally stores all metadata in a knowledge graph. Deriving from the metamodel depicted 

in Figure 5-5, the Data Catalog structures the metadata based on a custom ontology named Data Catalog 

Ontology. The development of this new ontology is currently conducted following the guidelines defined by 

the Linked Open Terms (LOT) methodology [PFF+22]. In this regard, the reuse of existing standard ontologies 

that can be leveraged is still under exploration. 

The standard Data Catalog Vocabulary (DCAT) 3.0 Ontology [DCAT24], which is broadly used by official 

institutions like the European Commission, could serve as the basis for the Data Catalog ontology as it defines 

core concepts like catalog, dataset, and data service. Combined with DCAT Ontology, the SPARQL Protocol 

and RDF Query Language (SPARQL) 1.2 Service Description Ontology (SPARQL-SD) [SPARQL24] can be 

leveraged to represent the SPARQL endpoint for the knowledge graph of the Data Fabric, where the data 

products are available. A good starting point for combining both DCAT and the SPARQL-SD is suggested 

[Ate16], where dcat:Dataset and sd:Dataset concepts are merged so as to manage graphs or named 

graphs as datasets in the Data Catalog (see Figure 5-5). In this sense, a data product created in the Data Fabric 

could be represented within a named graph, which, in turn, is registered as a dataset in the Data Catalog. 

 

Figure 5-5: Combination of DCAT and RDF datasets (source: [Ate16]) 
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On the other hand, the Data Catalog must cope with the business glossary terms that link to the data products 

registered in the catalog. In this sense, the Simple Knowledge Organization System Ontology (SKOS) [MB08] 

is the go-to standard ontology for knowledge management. This ontology allows for building glossaries, 

taxonomies, and thesauri. The details on the combination of business terms defined in a glossary with datasets 

from a data catalog are already suggested by the DCAT specification. 

The data products registered in the data catalog are the responsibility of data owners, therefore, the Data 

Catalog must capture information about the members and teams of an organization, and their ownership of 

data products. Here the Organization Ontology (ORG) [ORG14] and the Friend-of-a-Friend Ontology (FOAF) 

[BM14] have been identified as the best candidates. As in the case of the business glossary, the DCAT ontology 

specification also provides guidelines for capturing the responsibilities of organization members with respect 

to the data products of a data catalog. 

Lastly, the Data Catalog should ideally support data quality to provide trust in the data products. To this end, 

the data catalog can integrate data lineage in the data catalog so to keep track of how data products have been 

generated in the data fabric. In this sense, the RML ontology itself, which is used in the Data Product Pipeline, 

can contribute to the lineage of the data. Similarly, the standard PROV Ontology (PROV-O) [PROVO13] 

could be combined with RML to provide further lineage information, though this possibility remains to be 

discussed with the W3C KGC, which has defined the RML ontology. 

Based on this analysis, the following releases of the Data Catalog block will bring a consolidated Data Catalog 

Ontology as well as the mechanisms that enable the population of these metadata in the knowledge graph of 

the Data Catalog. For the implementation of such mechanisms, the use of the RML language is also foreseen, 

as done for the creation of data products in the Data Fabric. 

5.2.2 Data Security 

In the Data Security module, we have three key functionalities: 

• Access Control: Ensures that data is only accessible to authorized users or systems by implementing 

fine-grained permissions and authentication mechanisms. 

• Data Provenance: Tracks the origin, history, and lifecycle of data, providing transparency and 

accountability for all actions performed on it. 

• Data Security API: Offers an interface to manage and enforce security policies, enabling consistent 

policy application and updates across the system. 

These functionalities work in synergy to provide robust, transparent, and efficient protection for your data. 

Access Control 

The Open Authorization (OAuth) framework serves as the reference standard for access control mechanisms, 

recognized for its effectiveness and widespread adoption. This study aligns with the objectives of the IETF 

Workload Identity in Multi-Service Environments (WIMSE) working group, which addresses the complexities 

of implementing fine-grained, least-privilege access control for workloads deployed across multiple service 

platforms. 

To establish the ROBUST-6G access control framework, several essential components must be considered: 

• Resources: These include all protected assets that users may wish to access, encompassing physical 

items, virtual entities, and elements related to services and applications. 

• Users: These are individuals or entities that interact with the system, either by requesting access to 

resources or by modifying policies to align with operational requirements. Notably, a network entity 

may function as either a resource or a user depending on the context of specific access decisions. 

• Identity Provider (IdP): This centralized service manages the identities of all participating entities, 

typically utilizing protocols such as Lightweight Directory Access Protocol (LDAP). The IdP ensures 

consistent identity verification across multiple systems and services. 

• Policy Enforcement Point (PEP): The PEP is responsible for intercepting access requests and 

enforcing trust and access policies. It guarantees that only authorized users can gain access to the 

requested resources. The specific policies that the PEP enforces are defined by the PDP. 

• Policy Decision Point (PDP): The PDP evaluates incoming access requests against established 

policies to determine whether access should be granted or denied. It sets the rules and criteria for 

access control based on user roles, attributes, and contextual factors. 
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• Policy Administration Point (PAP): This component is tasked with creating, managing, and 

modifying access policies. The PAP facilitates dynamic adjustments based on the evolving needs of 

data owners or environmental conditions. 

• Accounting Ledger (AL): The AL meticulously tracks all access control activities, ensuring that 

every action is logged for auditing and compliance purposes. It maintains a comprehensive record of 

decisions made over time, allowing for thorough review and analysis. 

The following architecture diagram illustrates in the components and their interactions within the access 

control framework. 

 

Figure 5-6: Access control mechanism 

Data flow management ensures that access requests are handled efficiently and securely from initial 

authentication through to final authorization and activity logging, as illustrated in Figure 5-7. 

The access request process begins when a user submits their credentials to the IdP for verification. Upon 

successful authentication, the IdP transmits the user’s information to the PEP, which subsequently queries the 

PDP for the applicable access policies. The PDP evaluates these policies and returns an access decision to the 

PEP. 

If access is granted, the PEP instructs the IdP to issue an access token to the user. The user then presents this 

token to the PEP when requesting access to a specific resource. The PEP forwards the access request to the 

PDP, which assesses it against the defined policies. The PDP’s decision regarding the request is then 

communicated back to the PEP. 

Should access be granted, the PEP enables the user to interact with the resource. Conversely, if access is denied, 

the PEP promptly informs the user. This structured flow guarantees that access decisions are made based on 

thorough policy evaluations and user authentication, ensuring both security and clarity in the access control 

process. 
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Figure 5-7: Data flow for access control mechanism 

Data Security API 

Access control is enforced through the Data Security API, which operates under the ROBUST-6G’s 

Authentication, Authorization, and Accounting (AAA) framework. This component ensures that only 

authenticated and authorized users can access data, supporting granular policy enforcement. It strengthens 

compliance with privacy, regulatory, and security standards by enabling data product owners and governance 

teams to define precise, context-specific access controls. 

Data product owners and members of the data governance team can define granular access control policies 

based on various patterns, such as roles or attributes. The Data Security service handles the registration, 

management, and enforcement of these policies, ensuring that data access remains secure and governed 

appropriately. 

The concept of Policy-as-Code (PaC) is essential in modernizing access control management. Using 

declarative languages like Rego [Rego24], authorization policies can be managed programmatically across 

multiple systems and environments. PaC offers significant advantages over traditional manual methods by 

enabling agile, scalable, and secure policy management. This approach not only simplifies policy updates and 

enforcement but also enhances the overall security posture of the system. Rego [Rego24] is a policy language 

specifically designed to define rules over complex data structures. Drawing inspiration from Datalog [Wil24], 

Rego offers a powerful set of features that make it ideal for modern, data-driven applications: 

• Declarative Syntax: Policies are defined in a clear, human-readable format. 

• Expressiveness: Supports nested rules, structured data, and built-in functions for granular control over 

user actions and resources. 

• Interoperability: Operates seamlessly on JavaScript Object Notation (JSON) data, making it highly 

effective for distributed and cloud-native applications. 

As a reference, an example Rego policy is included below: 

package example 
# Allow read access to resources if the user has the "read" role 
default allow = false 
allow { 

input.user.role == "read"  } 
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In this example, the policy defines access rules based on user roles. The rule evaluates input data, returning a 

Boolean value that dictates whether the action is permitted. Rego allows this logic to be extended to extremely 

detailed conditions, enabling fine-grained control over which users can perform specific actions, on which 

resources, and under which circumstances. 

The Data Security API provides a RESTful interface to manage and enforce Rego-based policies efficiently. 

Key Features 

• Policy Registration: Easily upload new access control policies using .rego files. 

• Retrieve Policies: Fetch the content of a specific policy, with the option to download it as a .rego file. 

• List Policies: View all registered policies in a single request. 

• Update Policies: Modify existing policies without re-registration. 

• Delete Policies: Securely remove policies via API calls. 

• Granular Control Enforcement: Ensure policies are precise and enforceable at scale. 

Figure 5-8 shows the FastAPI interface, which provides a user-friendly platform to interact with the Data 

Security API: 

 

Figure 5-8: Data Security API 

Data Provenance 

To establish provenance, ensuring both the origin and integrity of data, we propose implementing digital 

signatures in line with the IETF draft on Concise Binary Object Representation (CBOR) Object Signing and 

Encryption (COSE) [LPF+23]. This approach provides a robust method for validating the authenticity and 

integrity of data by embedding digital signatures within it. Leveraging COSE, signatures are generated and 

verified according to Public Key Infrastructure (PKI) principles. 

The process consists of several key steps [LPF+23]: 

1. Canonicalization: Before signature generation, the content undergoes canonicalization, guaranteeing 

a consistent data representation regardless of serialization format. 

2. Signature Generation: Using the COSE Sign1 structure, the signature is generated with components 

including the key ID (kid), serialization method, algorithm parameters, and the signature itself. 

3. Signature Verification: The generated signature is then validated against “externally supplied data”, 

specifically the content used during signature creation. 

It is crucial to note that digital signatures alone do not prevent data tampering if the data is compromised before 

signing. Thus, this solution is complemented by access control mechanisms to safeguard against unauthorized 

access and further reinforce data integrity. 

Figure 5-9 illustrates the process used to ensure provenance through digital signatures. By combining these 

robust governance and security frameworks, the ROBUST-6G dataspace architecture provides a resilient and 

adaptable environment for managing, securing, and accessing data in the evolving landscape of 6G. This 

approach guarantees that data products within the continuum are both trusted and versatile, empowering a 

broad spectrum of secure data UCs. 
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Figure 5-9: Provenance 

6 Conclusion 

The ROBUST-6G project aims to provide an integrated approach of smart security services for 6G networks 

through the exploitation of distributed and trusted AI/ML, zero-touch integrated security management and 

orchestration mechanisms, AI/ML-driven physical layer security technologies, pervasive monitoring, and 

effective data management capabilities. In this context, this deliverable has presented the functional and 

technical requirements, applicability UCs targeted by the project, initial version of the system architecture as 

well as the ROBUST-6G dataspace. 

Three UCs are considered by the project. The first one deals with the trustworthiness assessment of AI/ML 

models in distributed 6G networks using decentralized federated learning. To strengthen the trustworthiness 

of the AI/ML models, different aspects such as robustness, sustainability, explainability, fairness, privacy and 

security in both physical and sensing layers are analysed. The UC also includes interactions between nodes of 

different hierarchies (cloud, edge, and extreme edge) to generate shared models while preserving privacy, 

assessing reputation and mitigating threats that could impact the AI/ML models. Two scenarios have been 

highlighted to build, on the one hand, a DFL agnostic framework for trusted AI/ML models and, on the other 

hand, to obtain and evaluate physical and security measures. 

The second UC aims at demonstrating the capabilities of ROBUST-6G security orchestration and automation 

solutions with focus on anomalies and attacks into smart IoT environments. The UC includes three scenarios 

considering different attacks on IoT devices and platform sited at far/extreme edge along with intended 

detection and remediation plans based on AI-driven closed-loops. 

The third one aims at extending the Open Gateway framework with the advanced security capabilities of 

ROBUST-6G, introducing the concept of Network-Security-as-a-Service (NetSecaaS). This UC focuses on 

enabling application developers and enterprises to seamlessly apply security capabilities through novel APIs 

developed within the CAMARA project, which abstract the complexity of telecommunications and facilitate 

security management. 

This deliverable has also presented the initial versions of the high-level and functional architectures of the 

ROBUST-6G project together with the deployment view of the developed solutions. These are built with a set 

of capabilities in mind, namely: distributed and trustworthy AI, exposure of security services, zero-touch 

orchestration and automation for security services, intelligent physical layer security solutions and effective 

data management & governance capabilities. 

The integration of the abovementioned services has led to the design of the architecture around the ROBUST-

6G dataspace, built upon the foundational modules of Data Fabric and Data Governance. These modules work 

in tandem to create a secure, efficient, and standardized environment for data management, tailored to the 

needs of distributed domains within the 6G ecosystem. The architecture emphasizes interoperability, enabling 

seamless integration across diverse systems, and robust data governance to ensure data quality, privacy, and 

secure access.  



 

 
 Deliverable D2.2 

 

Dissemination level: Public Page 67 / 69 
 

References 

[Ate16] G. A. Atemezing, “Applying DCAT vocabulary on RDF datasets”, November 2016, 

https://www.w3.org/2016/11/sdsvoc/SDSVoc16_paper_6. 

[BKT+22] A. Borys, A. Kamruzzaman, H. N. Thakur, J. C. Brickley, M. L. Ali and K. Thakur, “An 

evaluation of IoT DDoS cryptojacking malware and Mirai botnet”. In Proceedings of the 2022 

IEEE World AI IoT Congress, pp. 725-729, June 2022. 

[BM14] D. Brickley and L. Miller, “FOAF vocabulary specification 0.99”, Namespace Document, 

January 2014, http://xmlns.com/foaf/spec. 

[BM21] N. Bouacida and P. Mohapatra, “Vulnerabilities in federated learning”. IEEE Access, vol. 9, 

pp. 63229-63249, April 2021. 

[Bra97] S. Bradner, “RFC 2119: Key words for use in RFCs to indicate requirement levels”, March 

1997, https://www.ietf.org/rfc/rfc2119.txt 

[Cam23] The CAMARA Project, “The telco global API alliance”, 2023, https://camaraproject.org. 

[CCM21] E. Catak, F. O. Catak and A. Moldsvor, “Adversarial machine learning security problems for 

6G: mmWave beam prediction use-case”. In Proceedings of the 2021 IEEE International Black 

Sea Conference on Communications and Networking, pp. 1-6, May 2021. 

[Chr24] The 6G-CHRONOS Project, “AI-assisted beyond 5G-6G architecture with deterministic 

networking for industrial communications”, 2022-2024, 

https://wimunet.ugr.es/projects/6gchronos.php. 

[CVH24] J. Christ, L. Visengeriyeva and S. Harrer, “Data mesh architecture: Data mesh from an 

engineering perspective”, 2024, https://www.datamesh-architecture.com. 

[CZD23] H. Chi, Q. Zeng and X. Du, “Detecting and handling IoT interaction threats in multi-platform 

multi-control-channel smart homes”. In Proceedings of the 32nd USENIX Security 

Symposium (USENIX Security 23), pp. 1559-1576, August 2023. 

[Dat24] The 6G-DATADRIVEN Project, “Data driven sustainable next generation (B5G and 6G) 

networks for manufacturing and emergency response”, 2023-2024, 

https://unica6g.it.uc3m.es/en/6g-datadriven. 

[DCAT24] World Wide Web Consortium, “Data Catalog Vocabulary (DCAT) - Version 3”, W3C 

Recommendation, August 2024, https://www.w3.org/TR/vocab-dcat-3. 

[Deh22] Z. Dehghani, “Data mesh: Delivering data-driven value at scale”. O’Reilly Media, April 

2022. 

[Gar24] Gartner Inc., “Using data fabric architecture to modernize data integration”, 2024, 

https://www.gartner.com/en/data-analytics/topics/data-fabricv. 

[Gsm23] GSMA, “The ecosystem for Open Gateway NaaS API development”, White Paper, June 2023, 

https://www.gsma.com/solutions-and-impact/gsma-open-gateway/gsma_resources/naas-

ecosystem-whitepaper. 

[GSS23] V. Gugueoth, S. Safavat and S. Shetty, “Security of Internet of Things (IoT) using federated 

learning and deep learning—Recent advancements, issues and prospects”. ICT Express, vol. 

9, no. 5, pp. 941-960, October 2023. 

[GYZ+21] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji and V. C. Leung, “Enabling massive IoT toward 6G: 

A comprehensive survey”. IEEE Internet of Things Journal, vol. 8, no. 15, pp. 11891-11915, 

August 2021. 

[Hex24-D33] Hexa-X-II project consortium, “Deliverable D3.3: Initial analysis of architectural enablers and 

framework”, April 2024. 

[HLB+18] R. Heartfield, G. Loukas, S. Budimir, et. al., “A taxonomy of cyber-physical threats and 

impact in the smart home”. Computers & Security, vol. 78, pp. 398-428, September 2018. 

https://www.w3.org/2016/11/sdsvoc/SDSVoc16_paper_6
http://xmlns.com/foaf/spec
https://www.ietf.org/rfc/rfc2119.txt
https://camaraproject.org/
https://wimunet.ugr.es/projects/6gchronos.php
https://www.datamesh-architecture.com/
https://unica6g.it.uc3m.es/en/6g-datadriven
https://www.w3.org/TR/vocab-dcat-3
https://www.gartner.com/en/data-analytics/topics/data-fabric
https://www.gsma.com/solutions-and-impact/gsma-open-gateway/gsma_resources/naas-ecosystem-whitepaper
https://www.gsma.com/solutions-and-impact/gsma-open-gateway/gsma_resources/naas-ecosystem-whitepaper


 

 
 Deliverable D2.2 

 

Dissemination level: Public Page 68 / 69 
 

[JOR+23] O. Jullian, B. Otero, E. Rodriguez, N. Gutierrez, H. Antona and R. Canal, “Deep-learning 

based detection for cyber-attacks in IoT networks: A distributed attack detection framework”. 

Journal of Network and Systems Management, vol. 31, art. no. 33, pp. 1-24, February 2023. 

[JSG+22] J. M. Jorquera Valero, P. M. Sánchez Sánchez, M. Gil Pérez, A. Huertas Celdrán and G. 

Martínez Pérez, “Toward pre-standardization of reputation-based trust models beyond 5G”. 

Computer Standards & Interfaces, vol. 81, art. no. 103596, pp. 1-17, April 2022. 

[K3s24] K3s Project Authors, “Lightweight Kubernetes”, 2024, https://k3s.io. 

[K8s24] The Kubernetes Authors, “Kubernetes: an open-source system for automating deployment, 

scaling, and management of containerized applications”, 2024, https://kubernetes.io. 

[KAK+23] N. W. Khan, M. S. Alshehri, M. A. Khan, et al., “A hybrid deep learning-based intrusion 

detection system for IoT networks”. Mathematical Biosciences and Engineering, vol. 20, no. 

8, pp. 13491-13520, June 2023. 

[KCC+23] M. Kuzlu, F. O. Catak, U. Cali, E. Catak, and O. Guler, “Adversarial security mitigations of 

mmWave beamforming prediction models using defensive distillation and adversarial 

retraining”. International Journal of Information Security, vol. 22, no. 2, pp. 319-332, April 

2023. 

[KGC24] W3C Community Development Team, “Knowledge graph construction community group”, 

2024, https://www.w3.org/community/kg-construct. 

[KMA+21] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances and open problems in federated 

learning”. Foundations and Trends in Machine Learning, vol. 14, no. 1-2, pp. 1-210, June 

2021. 

[LPF+23] D. Lopez, A. Pastor, A. H. Feng, H. Birkholz and S. Garcia, “Applying COSE signatures for 

YANG data provenance”. IETF Internet-Draft draft-lopez-opsawg-yang-provenance-03, July 

2024, https://datatracker.ietf.org/doc/draft-lopez-opsawg-yang-provenance/03. 

[MB08] A. Miles and S. Bechhofer, “SKOS Simple knowledge organization system RDF schema”, 

August 2008, https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html. 

[MHE+16] D. Meyer, J. Haase, M. Eckert and B. Klauer, “A threat-model for building and home 

automation”. In Proceedings of the 2016 IEEE 14th International Conference on Industrial 

Informatics, pp. 860-866, July 2016. 

[MJC+21] L. Mucchi, S. Jayousi, S. Caputo, et al. “Physical-layer security in 6G networks”. IEEE Open 

Journal of the Communications Society, vol. 2, pp. 1901-1914, August 2021. 

[MKP+22] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha and G. Srivastava, 

“Federated-learning-based anomaly detection for IoT security attacks”. IEEE Internet of 

Things Journal, vol. 9, no. 4, pp. 2545-2554, February 2022. 

[OD22] J. Ordonez-Lucena and F. Dsouza, “Pathways towards network-as-a-service: the CAMARA 

project”. In Proceedings of the ACM SIGCOMM Workshop on Network-Application 

Integration, pp. 53-59, August 2022. 

[ORG14] World Wide Web Consortium, “The organization ontology”, W3C Recommendation, January 

2014, https://www.w3.org/TR/vocab-org. 

[OS24] OpenInfra Foundation, “OpenStack: an open-source cloud computing standard to support 

virtual machines, container and bare metal workloads”, 2024, https://www.openstack.org. 

[PFF+22] M. Poveda-Villalón, A. Fernández-Izquierdo, M. Fernández-López and R. García-Castro, 

“LOT: An industrial oriented ontology engineering framework”. Engineering Applications of 

Artificial Intelligence, vol. 111, art. no. 104755, pp. 1-22, May 2022. 

[PROVO13] World Wide Web Consortium, “PROV-O: The PROV ontology”, W3C Recommendation, 

April 2013, https://www.w3.org/TR/prov-o. 

[Rego24] Open Policy Agent, “Policy Language: the native query language Rego”, 2024, 

https://www.openpolicyagent.org/docs/latest/policy-language. 

[Snort24] Cisco, “Snort: an open-source intrusion prevention system”, 2024, https://www.snort.org. 

https://k3s.io/
https://kubernetes.io/
https://www.w3.org/community/kg-construct
https://datatracker.ietf.org/doc/draft-lopez-opsawg-yang-provenance/03
https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html
https://www.w3.org/TR/vocab-org
https://www.openstack.org/
https://www.w3.org/TR/prov-o
https://www.openpolicyagent.org/docs/latest/policy-language
https://www.snort.org/


 

 
 Deliverable D2.2 

 

Dissemination level: Public Page 69 / 69 
 

[SPARQL24] World Wide Web Consortium, “SPARQL 1.2 service description”, W3C Working Draft, 

November 2024, https://www.w3.org/TR/sparql12-service-description. 

[TAU22] E. Tekiner, A. Acar and A. S. Uluagac, “A lightweight IoT cryptojacking detection mechanism 

in heterogeneous smart home networks”. Network and Distributed System Security (NDSS) 

Symposium, pp. 1-15, April 2022. 

[Ton24] 5TONIC, “An open research and innovation laboratory focusing on 5G technologies”, 2024, 

https://www.5tonic.org. 

[URB+21] M. A. Uusitalo, P. Rugeland, M. R. Boldi, et al., “6G vision, value, use cases and technologies 

from European 6G flagship project Hexa-X”. IEEE Access, vol. 9, pp. 160004-160020, 

November 2021. 

[Wil24] M. Willsey (UC Berkeley), “Declarative program analysis and optimization (CS294-260): 

Datalog”, 2024, https://inst.eecs.berkeley.edu/~cs294-260/sp24/2024-02-05-datalog. 

[WL24] W. Wei and L. Liu, “Trustworthy distributed AI systems: Robustness, privacy, and 

governance”. ACM Computing Surveys, Just Accepted, pp. 1-38, January 2024. 

[ZLQ+20] Y. Zhan, P. Li, Z. Qu, D. Zeng and S. Guo, “A learning-based incentive mechanism for 

federated learning”. IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6360-6368, January 

2020. 

[ZMZ+22] M. Zolotukhin, P. Miraghaie, D. Zhang, T. Hämäläinen, W. Ke and M. Dunderfelt, “Black-

box adversarial examples against intelligent beamforming in 5G networks”. In Proceedings of 

the 2022 IEEE Conference on Standards for Communications and Networking, pp. 64-70, 

November 2022. 

[ZSM009-1] ETSI GS ZSM 009-1 Version 1.1.1, “Zero-touch network and Service Management (ZSM); 

Closed-loop automation; Part 1: Enablers”, 2023-01. 

https://www.w3.org/TR/sparql12-service-description
https://www.5tonic.org/
https://inst.eecs.berkeley.edu/~cs294-260/sp24/2024-02-05-datalog

	1 Introduction
	1.1 Motivation, objectives, and scope
	1.2 Document structure

	2 Use cases
	2.1 AI model trustworthiness evaluation for 6G distributed scenarios
	2.1.1 Motivation and overall description
	2.1.2 State-of-the-art for application in 6G networks
	2.1.3 Use case detailed description
	2.1.4 Scenarios
	2.1.4.1 Decentralized federated learning for joint privacy-preserving AI/ML model training
	2.1.4.2 Physical and sensing layer trustworthiness and resilience


	2.2 Automatic threat detection and mitigation in 6G-enabled IoT environments
	2.2.1 Motivation and overall description
	2.2.2 Stakeholders definition, roles, and interactions
	2.2.3 State-of-the-art for application in 6G networks
	2.2.4 Use case detailed description
	2.2.5 Scenarios
	2.2.5.1 Device violation to cause an economic harm (a)
	2.2.5.2 Fraudulent usage of device resources
	2.2.5.3 Device violation to cause an economic harm (b)


	2.3 Security capabilities exposure with Network-Security-as-a-Service (NetSecaaS)
	2.3.1 Motivation and overall description
	2.3.2 Stakeholders definition, roles, and interactions
	2.3.3 State-of-the-art for application in 6G networks
	2.3.3.1 Open Gateway
	2.3.3.2 Architectural approaches

	2.3.4 Use case detailed description
	2.3.5 Main scenario description


	3 ROBUST-6G requirements
	4 ROBUST-6G architecture
	4.1 High-level ROBUST-6G architecture
	4.2 Functional architecture of ROBUST-6G
	4.3 High-level deployment view of ROBUST-6G
	4.4 ROBUST-6G security services in the architecture
	4.4.1 Data Management Platform
	4.4.2 Trustworthy and Sustainable AI Services
	4.4.2.1 Explainable AI (XAI)
	4.4.2.2 Sustainable and scalable AI
	4.4.2.3 Robust AI
	4.4.2.4 Privacy-preserving AI
	4.4.2.5 Enhanced FL Services
	4.4.2.6 AI Service Management Layer

	4.4.3 Zero-touch Security Management
	4.4.3.1 Zero-touch Security Platform: a functional architecture

	4.4.4 Physical Layer Security
	4.4.5 Use Case Interactions


	5 ROBUST-6G dataspace
	5.1 Data fabric
	5.2 Data governance
	5.2.1 Data Catalog
	5.2.2 Data Security


	6 Conclusion

